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Abstract

We propose an explicitly discriminative and ‘simple’ ap-

proach to generate invariance to nuisance transformations

modeled as unitary. In practice, the approach works well to

handle non-unitary transformations as well. Our theoreti-

cal results extend the reach of a recent theory of invariance

to discriminative and kernelized features based on unitary

kernels. As a special case, a single common framework

can be used to generate subject-specific pose-invariant fea-

tures for face recognition and vice-versa for pose estima-

tion. We show that our main proposed method (DIKF)

can perform well under very challenging large-scale semi-

synthetic face matching and pose estimation protocols with

unaligned faces using no landmarking whatsoever. We ad-

ditionally benchmark on CMU MPIE and outperform pre-

vious work in almost all cases on off-angle face matching

while we are on par with the previous state-of-the-art on the

LFW unsupervised and image-restricted protocols, without

any low-level image descriptors other than raw-pixels.

1. Introduction

Over the years there have been many different ap-

proaches to the problem of general face recognition and

pose estimation. However, there is a lot yet to be achieved

before one can consider the unconstrained version of these

problems fully solved. Though there are many algorithms

in literature that perform extremely well on unconstrained

datasets such as the LFW [21, 35, 8, 40, 6, 26, 38], given

the complexity of these algorithms, it remains unclear as to

what underlying objective each of them aims to achieve in

the context of unconstrained face matching. To address this

need, we refrain from incorporating ‘complex’ algorithms

and optimization problems in our approach and solely base

the core mechanism on fundamental principles of generat-

ing invariance.

Although success on the LFW framework has been very

encouraging, a paradigm shift is underway towards the role

Figure 1: The common single framework for pose-invariant face recogni-

tion and subject-invariant pose estimation. Measuring moments (pooling)

across a transformation (i.e. subject or pose in this figure) invokes invari-

ance towards that transformation.

of such large unconstrained databases. It has been sug-

gested, that the problem of face recognition be divided into

subtasks of achieving invariance towards transformations of

a face [23]. Further, strong recent progress on the super-

vised protocols of the LFW dataset nearing human accu-

racy have perhaps overshadowed the need to understand the

fundamental problems in vision tasks such as recognition.

In light of these arguments, there is a need for methods

that are based on fundamental principles, not in order to

beat the current state-of-the-art, but instead to further our

understanding of the problem itself. Although, there has

been significant work in literature generating implicit in-

variance to specific individual or a small subset of these

transformations at once, an approach which generates ex-

plicitly invariant features to any unitary modeled transfor-

mation while being explicitly discriminative has not been

studied. Further, there is a need for a study investigating

generation of invariant features to multiple common trans-

formations of faces in a controlled setting. Studies on large-

scale controlled datasets have the advantage of being more

informative regarding the algorithmic shortcomings.
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Contributions. In this paper, we present an approach

to obtain explicitly discriminative features that are invariant

to multiple transformations that can be locally modeled as

unitary. The approach does not involve solving a heavy op-

timization problem. It is based, instead, on a different mani-

festation of group invariance and on learning discriminative

filters through a simple closed form solution. We focus part

of our study to be more exploratory towards understanding

the challenges due to specific common transformations such

as pose, translation, scale and rotation. Even using a sim-

ple method with a closed-form solution, working only with

raw-pixels, we are able to, to the best of our knowledge,

achieve the state-of-the-art on the MPIE database protocol,

and match the previous state-of-the-art on the LFW unsu-

pervised and image-restricted label-free protocol. Hence

our approach is ‘bells and whistles free’. Our main con-

tributions are:

1. We propose a simple approach to learn discriminative

non-linear features that are invariant to unitary trans-

formations. We extend the reach of a recent theory of

invariance to discriminative and kernelized features.

2. Focusing on the challenging transformation of pose,

we propose a simple dense-landmark-free approach

which results in a framework capable of performing

open-set pose-invariant face recognition and simulta-

neous pose estimation as illustrated in Fig. 1.

3. We extend the method to result in a sequential ap-

proach of generating invariance to multiple sub-groups

of transformations. Using this, we arrive at a com-

pletely landmark-free framework (at evaluation) for

transformation invariant face recognition and pose es-

timation.

Related work. A majority of the recent efforts on un-

constrained face verification focus on LFW, and rely greatly

on locating accurate and dense facial landmarks and de-

scriptors to extract overcomplete information from the im-

age and/or use 3D modeling in the algorithm [35, 8, 25, 40,

7, 6, 31, 11, 3, 24, 42, 22, 38]. Many of these systems are

also closed set, whereas our approach is inherently open-

set. Further they address different types of transformations

differently. Automatic dense facial landmarking, in fact al-

ready factors out a majority of the transformations such as

translation, rotation and scale. Further, LFW provides rea-

sonably aligned images which help to factor out translation,

in-plane rotation and scale. This enables the algorithms to

escape the need to account for those transformations within

the core framework. In practice, real-time landmarking is

expensive, thus there arises a need to explore methods than

circumvent the requirement for dense and accurate land-

marks.

A slightly different class of algorithms based on deep

learning have gained popularity recently, which utilizes a lot

of data (high sample complexity) and increases model com-

plexity drastically [37, 36, 32, 12]. These methods although

widely successful, fail to provide a better understanding of

the problem due to complex models and over-complete fea-

ture extraction combined with unconstrained testing proto-

cols.

In light of the current trend in unconstrained face recog-

nition, large-scale databases such as LFW include an uncon-

trolled amount of certain unspecified types of transforma-

tions in each image. However, other transformations such

as translation, in-plane rotation and scale are factored out

by providing aligned faces. Having no control over the type

and amount of other transformations tends to bias the de-

velopment of face recognition systems where it is not clear

why some algorithms work well while others don’t. Thus,

eluding the underlying problem which is to generate invari-

ance to all intra-class transformations while being discrim-

inative amongst inter-class transformations. In this work,

we present results on a semi-synthetic large-scale data with

controlled amounts of transformations.

Normalized invariant dot-products (NDP). Some re-

cent work by Liao et al. [26], adopting a perspective sim-

ilar to ours in this paper, perform competitively on LFW.

However, they use ‘external training data’ to extract fea-

tures and require accurate facial alignment before extract-

ing more complex feature descriptors (HOG followed by

PCA). To have a fair comparison in our exploratory exper-

iments, we compare against their core baseline method of

using normalized dot-products followed by mean (NDP-ℓ1)

and max (NDP-ℓ∞) pooling. The multilayer extension of

our approach on the other hand requires no such alignment

for recognition of misaligned faces and we restrict ourselves

to work with raw pixels throughout this study.

2. Linear Invariant Random Features

I-theory [2] was proposed to generate invariance to trans-

formations motivated by the properties of the visual cor-

tex. Empirically, through experiments on LFW, it has been

shown that sufficient invariance can be learned [26].

Sample complexity. One of the main motivations of I-

theory of invariance is the problem of reducing sample com-

plexity to learn a concept. It can be argued that humans

tend to learn new concepts (e.g. the structure of a novel ob-

ject) with very few examples. Yet most machine learning

and vision algorithms require a lot of data to learn, with

the general focus being on performance rather than sample

complexity. Given the advances in cheaper computation,

sample complexity might not seem important. However, in

order to understand the low sample complexity character-

istics of human vision, it might be useful to better explore

paradigms which try to achieve low sample complexity. I-
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theory is one such paradigm we now briefly overview.

Consider a unitary group of transformations G with

group elements g with finite cardinality (|G|). One can rep-

resent the action (i.e. translation, rotation etc.) of the group

element g on an image as gI(x) = I(g−1x). The orbit of

the images I ′ generated by {I ′ | I ′ = g(I) ∀g ∈ G} is

unique to every image since it is the set of all variations of

an image as defined by G. In order to compare two orbits, a

measure which also introduces invariance is the probability

distribution PI induced by the group elements of G on I .

The heuristic is to directly/indirectly measure a statistic of

the probability distribution, thus generating invariance. It

can be shown that I ∼ I ′ ⇔ PI = PI′ , i.e. if two images

are equivalent under some g, then their distributions are

identical [2]. To characterize the distribution PI , one can

use arbitrary templates tk, k ∈ {1, . . . ,K}, each template

providing a 1-D projection of PI . In order to achieve dis-

criminability between say n images/orbits, up to precision

ǫ, with confidence (1 − δ), one must have K ≥ 2

cǫ2
log n

δ

[2]. Perhaps one of the most interesting observations that

I-theory makes is that, since g is unitary, we have:

〈g(I), t〉 = 〈I, g−1(t)〉 (1)

Thus, the distribution of the set {〈gI, t〉}, ∀g ∈ G is the

same as that of {〈I, g−1t〉}, ∀g ∈ G. Hence, it is not nec-

essary to explicitly observe all transformations of a novel

image in order to discriminate it. This is the key to re-

duce sample complexity, and what our approach capitalizes

on working with few faces (∼ 3000 for LFW and <350 for

other experiments).

One can then use multiple 1-D projections of the dis-

tribution in order to characterize the novel object. Char-

acterizing this distribution leads to an invariant computed

through a histogram µn(I) = 1

|K|

∑

k η(〈I, gk(tn)〉), ∀n =

1, . . . , N . Here, η can be a non-linear threshold function

η : R 7→ R which results in a histogram approximation

of the distribution. The distribution of {〈gI, t〉}, ∀g ∈ G
can also be explained by its set of moments. Liao et al.

[26] found that the first moment approximation of the dis-

tribution worked well in practice which translates to mean

pooling. Different pooling schemes would capture different

aspects (moments) of the 1-D distribution.

3. Discriminative Invariant Kernel Features

Discriminative templates to generate invariant fea-

tures. Section 2 describes how a set of arbitrary templates

transformed by an unitary group can be used to invoke in-

variance to that group through statistics of the invariant dis-

tribution under the action of the group. However, the tem-

plates t are not discriminative and they may capture redun-

dant information about the distribution. Discriminability

between classes may offer better separation between the or-

bits of different images.

Discriminative invariant linear features (DILF). We

adopt a simple way of generating discrimination between

K classes. We seek a filter or template tk s.t. XT tk = uk,

where X ∈ R
d×K is the pre-whitened data matrix with K

classes. uk is a label vector of zeros with 1 at position k
for the k-th class. Under the constraint that the template has

to be a linear combination of the data, the solution becomes

tk = X(XTX)−1uk. Now, consider a finite unitary group

G acting on X, thereby generating {gn(Xn)} i.e. Xn =
gn(X), where every element in X has been acted upon by

gn ∈ G1. We train N × K separate templates or filters

tkn, one for each class and each transformation. Concretely,

tkn = Xn(X
T
nXn)

−1uk.

A key issue is that the learned templates need to be the

action of a unitary group in order for the distribution under

the orbit to be invariant to that group. Specifically, if T =
{tk} is the set of learned templates or filters then, it should

be possible to express T as {gn(t0) | gn ∈ G}. We find that

this is indeed the case.

Theorem 3.1 (DILF filters form a set of transformed tem-

plates under a group). Given a group G of unitary transfor-

mation elements g with |G| = N and {Xn | n = 1, . . . , N}
are pre-whitened template matrices, then the set of DILF

filters Tk = {tkn = Xn(X
∗
nXn)

−1uk | n = 1, . . . , N} is

a set of transformed templates under the action of group G.

The proof is analogous to that of Theorem 3.2 to be pre-

sented later (with a linear kernel). Since all K sets Tk can

be expressed as being acted on by a group, one can compute

an invariant feature of dimension K by either estimating the

distribution or by computing moments of the K 1-D distri-

butions {〈I, tkn〉}, ∀k [2]. Hence, the feature extraction can

capitalize on storing templates to ‘learn’ transformations in

group G while being explicitly discriminative.

Although DILF does achieve explicit discriminability,

performance can be enhanced by dot-products in a high-

dimensional space incorporating inherent non-linearities.

This directly motivates the use of kernels into DILF thus ar-

riving at Discriminative Invariant Kernel Features (DIKF).

Discriminative invariant kernel features (DIKF). We

now present our central method of extracting explicitly dis-

criminative invariant features. Our goal remains the same

as in the previous section, and so does our problem for-

mulation. However, now our approach incorporates high-

dimensional embeddings in the form of kernels. We empha-

size the fact that the method remains inherently simple (dot-

products followed by statistics computed over the invariant

distribution) albeit in a much high dimensional space.

1This is a slight abuse of notation, wherein g can act both on vectors

and column-wise on matrices.
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Consider a feature mapping Φ : Rd → H, to some high-

dimensional Hilbert space H, then learning the filter on a

data matrix Xn (where each column vector is a vectorized

image xkn, ∀k = 1, . . . ,K with transformation gn ∈ G),

the template becomes

Φ(tkn) = Φ(Xn)
(

Φ(Xn) · Φ(Xn)
)−1

uk (2)

However, in order to be able to extract invariant features

using DIKF, the K sets of filters need to form to a set acted

upon by group G. This puts constraints on the kind of kernel

Φ can be. In this case, Φ is constrained to be a unitary kernel

as per the following definition.

Definition 3.1 (Unitary Kernel). We define a kernel

k(x, y) = 〈φ(x), φ(y)〉 to be a unitary kernel if, for a

unitary group G, the mapping φ(x) : X → H satisfies

〈φ(gx), φ(gy)〉 = 〈φ(x), φ(y)〉 ∀g ∈ G, ∀x, y ∈ X .

We now show that for unitary kernels, indeed, DIKF fil-

ters form a set of transformed templates in the kernel space

under the unitary group.

Theorem 3.2 (DIKF filters form a set of transformed tem-

plates in the kernel space under a group). Given a group

G of unitary transformation elements g with |G| = N ,

if k(x, y) = 〈φ(x), φ(y)〉 i.e. k is a unitary kernel, and

{Xn | Xn = gn(X), gn ∈ G} are a set of pre-whitened

matrices acted upon by G, then the set of DIKF filters

Tk =
{

Φ(tkn) = Φ(Xn)
(

Φ(Xn) · Φ(Xn)
)−1

uk | ∀n
}

is a set of transformed templates under a group.

Proof. Without loss of generality, consider X1 = {xi|i =
1, . . . ,K} and Xn = {gn(xi)|i = 1, . . . ,K} where gn ∈

G. Thus, Φ(tkn) = Φ(Xn)
(

Φ(Xn) · Φ(Xn)
)−1

uk.

For an unitary kernel, 〈Φ(gn(x)),Φ(gn(y))〉 =
〈Φ(x),Φ(y)〉. Thus, ∃g : H → H s.t. 〈gΦ(x), gΦ(y)〉 =
〈Φ(x),Φ(y)〉. g is the transformation between x and g(x)
in the kernel Hilbert space. The unitary kernel property im-
plies that g is unitary and therefore linear. Further, it forms
a group G′ in the kernel Hilbert space. Now, we have

Φ(tkn) = Φ(Xn) (Φ(Xn) · Φ(Xn))
−1

uk (3)

= Φ(gn(X1))(Φ(gn(X1)) · Φ(gn(X1)))
−1

uk (4)

= Φ(gn(X1))(Φ(X1) · Φ(X1))
−1

uk (5)

= Φ(gn(X1))vk = g
n
(Φ(X1))vk (6)

= g
n
(Φ(X1)vk) (7)

In Eqn. 4, with a slight abuse of notation, we use the same

notation gn(·) and gn(·) as an operator both on a single im-

age x or a matrix of images X. In Eqn. 5, note that the trans-

formation in the kernel Hilbert space is unitary. In Eqn. 6,

we put vk = (Φ(X1) · Φ(X1))
−1uk and recall that gn is

linear. Thus, every element of the template set

Φ(tkn) = Φ(Xn)
(

Φ(Xn) · Φ(Xn)
)−1

uk ∈ Hk

can be written as an unitary transformation of the vector

Φ(X1)vk with group element gn ∈ G′.

Preservation of the group transformation property for all

sets Tk even in the kernel Hilbert space allows for 1-D dis-

tributions of the filter responses tkn with a novel image to

be invariant to G. One can compute statistics, such as mo-

ments, that therefore become invariant to G in the original

image space. In this paper, we explore two such moments,

the first moment translating to mean pooling and the infin-

ity moment translating to max pooling. Hence, we can use

the learned filters to model the transformations of the data

instead of needing to explicitly observe transformations of

the novel image, thereby reducing sample complexity. It is

interesting to note that unitary transformations allow sets of

non-linear filters (templates or hyperplanes) to form sets of

transformed templates under a group in the kernel Hilbert

space as well. This would allow a much broader class of

discriminative models to fit into the approach of generating

invariance though moment measurement. Nonetheless, in

this study, we restrict ourselves to filter based approaches.

4. Common Framework for Landmark-Free

Unsupervised Pose-Invariant Face Recog-

nition and Pose Estimation

Applying DIKF to faces. Although discriminative in-

variant feature extraction framework can be applied to any

kind of data observing transformations modeled by a group,

in this work, we focus on faces. Challenging transfor-

mations of faces include translation, in-plane rotation and

scaling which can be perfectly modeled linearly by some

unitary G. However, out-of-plane rotation or pose varia-

tion is considered to be much more challenging being non-

linear. Nonetheless, a small enough pose variation can in-

deed be approximated by some G. It has been previously

observed that pose variations can be piece-wise linearly ap-

proximated through transformation-dependent submanifold

unfolding [29]. The training set X = {Xn | gn ∈ G} for

training our templates to generate invariance towards pose

variation would involve faces in different poses. In the case

of faces, we do this by generating a 3-D model of each

face template and then rendering them in different poses

using 3D generic elastic model (3DGEM) [14]. Thus, for

K different faces, we can have N different transformations

of pose. The training set would thus have subject varia-

tion along one axis and pose variation along the other (see

Fig. 1). Note that this step is part of dataset generation and

not actually a part of the algorithm.
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Unsupervised training of templates. It is straight-

forward to apply DIKF to a supervised setting. For the

unsupervised setting, we simply choose random faces (not

restricted to be from different subjects), and generate mul-

tiple poses to obtain the training set used to learn the tem-

plates/filters. In training DILF and DIKF, we simply allow

uk to be 1 only for the k-th face, thereby extracting features

discriminative between the faces in the training set without

using any labels.

Single framework for pose-invariant face recog-

nition and pose estimation. There are two different

kinds of transformations modeled in the face training set

X = {Xn | gn ∈ G} , i.e. pose variation and subject

variation. The transformation across subjects is a much

harder transformation to model. Even though there exists

in general, an affine transformation between subjects, it

is hard to prove it is a group, and thus is an abuse of

the theoretical framework. Nonetheless, in practice, we

explore the limits to the method. To generate invariance, we

‘pool’ across subjects for a subject-invariant pose-selective

feature for pose estimation and ‘pool’ across poses to

obtain a pose-invariant subject-selective feature for face

verification. This is the essence of the common framework.

Note that even if we are unable to observe the entire orbit of

G, approximate invariance would hold [2]. If we only pool

across pose variation, we only require the two eye-center

locations to be aligned across all the faces. This is a much

less restrictive and computationally feasible condition than

having to estimate a dense set of landmarks in order to

perform feature extraction [31, 6, 7, 40, 8, 35]. We later

drop this requirement and move towards a completely

landmark-free system at evaluation. Algorithm 1 formally

describes DIKF, where G in our case models pose-variation

for face verification.

Algorithm 1: Extracting DIKF for I invariant to G

input : Input image I (vectorized), X = {Xn =
gn(X)|n = 1, . . . , N}, {uk|k = 1, . . . ,K},Φ, G
with |G| = N

output: Invariant feature vector µ ∈ RK

1 Learn and compute correlations with filters;

2 for gn ∈ G do

3 for k = 1, . . . ,K do

4 tkn = Xn

(

Φ(Xn) · Φ(Xn)
)−1

uk

fkn = 〈Φ(tkn)
⊤Φ(I)〉

5 Compute first / infinity moment;

6 for k = 1, . . . ,K do

7 µk = 1

N

∑

i
fki (Mean Pooling)

8 µk = ‖fk‖∞ (Max Pooling)

Sequential invariance to multiple transforms. Affine

transformations in images span a huge space, and to gener-

ate invariance to the entire group would involve dense sam-

pling of the orbit of the group (which comprises of sub-

groups e.g. unitary transforms contain translation and rota-

tion). This would result in sample complexity being expo-

nential in the number of sub-group elements since we are

required to sample all combinations. Instead, we consider

the factored-out transformations in sequence, e.g. the trans-

lation sub-group, followed by the rotation sub-group and so

on. This reduces the sample complexity drastically down

to being linear in number of sub-group elements. The pro-

cedure applies Algorithm 1 in sequence in multiple ‘lev-

els’, with each level having its training template based off

features from the previous level. Thus, each level progres-

sively adds in invariance until all sub-groups being modeled

are covered.

5. Experimental Results

5.1. PoseInvariant Face Recognition

We test our proposed DIKF for pose-invariant face

recognition and compare against NDP in a recent study

[26]2.

A. Single-level pose-invariant face recognition on a

large-scale semi-synthetic mugshot database.

Our first experiment is exploratory, and deals exclusively

with the most important transformation considered in this

paper, i.e., pose variation. Although there has been some

interesting previous work on testing pose invariance exclu-

sively using NDP, the experiments were carried out in small

scale and by using fully synthetic faces with minimal tex-

ture variation [2]. Even though strong results using a sim-

ilar pooling approach on LFW have been recently estab-

lished, the existence of a multitude of transformations in

LFW make it difficult to establish how effective was the in-

variance to pose transformation specifically [26].

Dataset generation. We choose to focus exclusively on

the transformation of pose, thus we design this experiment

to not include most other transformations such as transla-

tion, scale and in-plane rotation. We start with 1,000 frontal

mugshot images of different subjects and then use 3D-GEM

to generate a 3D model of each face and render multiple

poses. We render poses varying from −40◦ to 40◦ (yaw)

and −20◦ to 20◦ (pitch) in steps of 5◦. Thus, in all for each

subject we obtain 153 different poses, thereby coming up to

a total of 153,000 images3.

Protocol. We evaluate ℓ∞-DIKF and ℓ1-DIKF and

2We present more experiments in the supplementary material.
3The dataset that we generate can be termed as a semi-synthetic dataset,

since we use real-world face images to render different poses. In this par-

ticular experiment, the template training data contains only the transfor-

mations of subject and pose. In order to factor out other common transfor-

mations, we use the two eye-center locations for locating and aligning the

face. In a future experiment, when we include additional transformations,

we drop this requirement and DIKF is applied completely landmark-free

(at evaluation).
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Figure 2: Pose-invariant face recognition results on the semi-synthetic

large-scale mugshot database (testing on 114,750 images).

Figure 3: Samples from the testing set containing randomized synthetic

transformations for one subject. (L-R): Pose, Noisy background and Scale

only; Pose, Noisy background and Translation only; Pose, Noisy back-

ground and In-plane Rotation only; All transformations together5

benchmark against NDP-ℓ∞ and NDP-ℓ1 [26, 2] directly on

raw-pixels. We train on 250 subjects (38,250 images) and

test each method on the remaining 750 subjects (114,750

images), matching all pose-varied images of a subject to

each other. Since we do not model our testing subjects dur-

ing training, the protocol followed is an Open Set (OS) face

verification protocol.

Results. Fig. 2 shows the experimental results with re-

ceiver operating characteristics (ROC) curves obtained for

all methods4. We notice that ℓ∞/ℓ1-DIKF performs con-

siderably better on this task than the other methods. There-

fore, in future experiments that are more competitive, we

focus on DIKF. Also, we find that NDP-ℓ1 [26] (which was

shown to perform very competitively on LFW after using

some pre-processing) and NDP-ℓ∞ [2], are outperformed

by all discriminative methods i.e. ℓ∞/ℓ1-DIKF and ℓ∞/ℓ1-

DILF. We find this trend to be consistent in all our experi-

ments. However, it is interesting to note that even vanilla

dot-products followed by pooling (NDP-ℓ∞), perform as

well as they do, suggesting that the goal of explicitly fac-

toring out invariance has some merit. The specific choice of

moment of the invariant distribution to measure appears to

have an effect only in discriminative methods.

B. Open set (OS) landmark-free face recognition on

large-scale semi-synthetic mugshot database using two-

level sequential invariance generation. In this exploratory

experiment, we simulate a controlled situation closer to

real-world unconstrained face matching.

4Throughout this work, we use the cosine distance metric to generate

the ROC curves.

Protocol. We train a two-level invariance generation

framework (i.e. running Algorithm 1 in sequence) where the

face data set at level 1 is designed to generate invariance for

only pose variation (we use the same 250 subjects for pose

invariance as in the previous experiment), and the one at

level 2, generates invariance towards the four sets of trans-

formations (translation, scale, in-plane rotation and all to-

gether). At level 2, we construct four distinct template sets

for each of the aforementioned variations exclusively, and

another one for all three transformations together. Note that

to generate invariance at level 2, we need to store the pose-

invariant features of the training faces from level 1 for each

transformation set. We use each template set at level 2 to

generate transformation invariance from the pose-invariant

features obtained in level 1. The sequential training follows

what is described in Section 4 and tests on the features of the

randomly generated unseen test sets. Note that for this ex-

periment, we are completely landmark and alignment-free

at evaluation, since we match using the images in Fig. 3 as is

without any additional information. The hope remains that

the framework would be invariant towards all other trans-

formations in the template sets while being discriminative

to the transformation across subjects.

Data generation for level 2 training and overall test-

ing. To construct the face data for training the template

filter sets for each of the four transformations, we gener-

ate a 3D model of 100 training subjects, and render them

at each of the 153 different poses as before. However, we

now also synthetically add in the 4 sets of additional trans-

formations (translation, scaling, in-plane rotation and all of

them together). Further, we fill the background of the face

wherever visible with random noise. Thus overall, we ob-

tain 4 data sets of 15,300 images each. To generate our

Open Set testing data, we repeat the randomized process to

generate another four 15,300-image sets using the four sets

of transformations for 100 unseen subjects. This randomly

generated dataset (samples shown in Fig. 3) has a very chal-

lenging protocol without any landmarks or alignment.

Results. Fig. 4 shows the ROC curves. Level 2 ℓ∞/ℓ1-

DIKF outperforms the other methods in all cases6. Fur-

ther, it performs surprisingly well given the difficulty in the

cases of adding individual transformations to pose variation.

Adding in all transformations and following the OS proto-

col seems to be too difficult to handle well for all methods.

Roughly, in a decreasing order of difficulty the transforma-

tions are, all transformations, translation, scale followed by

in-plane rotation.

C. MPIE database.

Protocol. There has not been a universal evaluation proto-

col established for the MPIE database. Therefore, we fol-

low the pose-invariant face recognition protocol as adopted

6NDP fails to extract any discrimination among subjects at level 2 for

the OS protocol.
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Figure 4: ROC curves for the Level-1 and Level-2 Open Set face matching protocol on large-scale mugshots database (using no landmarks). Different

combinations of transformations are modeled for invariance (a): Pose, Noisy background and Scale only, (b): Pose, Noisy background and Translation only,

(c): Pose, Noisy background and In-plane Rotation only, and (d): All transformations together.

in previous studies [31, 15, 1]. The authors use a subset

of MPIE from the first session with neutral expression and

frontal lighting, covering nine poses (−60◦ to 60◦ in yaw in

steps of 15◦) of 249 subjects7. We, however, generate 153

poses for each of the gallery image offline and compile our

face template set. Since MPIE has 249 subjects, for each

query image we form a 249 dimensional pose-invariant fea-

ture vector. We then match the features to that of the gallery

image. In a parallel experiment, we also explore matching

all off-angle posed images against the frontal images. This

is a much harder protocol than matching each angle in yaw

separately.

Results. The results are shown in Table 1. We see that

ℓ∞-DIKF achieves the state-of-the-art in terms of rank-1

identification rate for all poses except 60◦. We attribute

this to the fact that we do not generate faces beyond 40◦

yaw during training and so we observe graceful degradation

for higher yaw angles. As an important distinction, we do

not use any form of landmarking, unlike [31, 15, 1], further

our method can support open-set matching, unlike [31, 15].

Fig. 5 shows the ROC curves obtained for the parallel ex-

periment of matching all off-angle posed images against the

frontal images. We find that ℓ∞-DIKF significantly outper-

forms other methods.

D. LFW: real-world unconstrained face recognition

database. Here, we apply the ℓ∞-DIKF methods on a real-

world unconstrained face recognition database: the LFW

database [21, 19].

Protocol. We follow the standard Unsupervised protocol as

well the Image-Restricted, Label-Free Outside Data proto-

col. Note the transformations in LFW probably do not form

a group, we only foucs on generating invariance towards

pose in this experiment and use only the two eye-center lo-

cations for alignment. The DIKF training is carried out on

raw pixels of a set of 3,000 randomly chosen label-free face

images (which can and have multiple images from the same

7In their work, pitch variation was not explored and to have a fair com-

parison we restrict ourselves exclusively to variation along the yaw axis.
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Figure 5: MPIE results on the parallel experiment: All non-frontal images

matched against frontal ones.

subject). In order to abide by the Unsupervised protocol, we

treat each face image as if they are from different subjects,

making our algorithm completely agnostic about label in-

formation. Our training procedure also satisfies the second

protocol mentioned above.

Results. The results for the Unsupervised protocol is re-

ported in Table 2 in terms of AUC, and the mean accuracy

for the Image-Restricted, Label-Free Outside Data proto-

col, along with many other competing algorithms. Fig. 6

shows the ROC curves for the LFW evaluation. The per-

formance obtained by the proposed ℓ∞-DIKF method is on

par with the state-of-the-art. This is somewhat surprising

considering we use only rough alignment and work directly

on raw pixels unlike some of the other methods we out-

perform.

5.2. DenseLandmarkFree Pose Estimation

Protocol. For the experiment on pose estimation, we

generate 15 poses (−40◦ to 40◦ along yaw and −20◦ to

20◦ along pitch all in steps of 20◦) for 350 unseen subjects

(5,250 images). For this experiment, we utilize only the

two eye-center locations for alignment, hence being dense-

landmark-free. We construct the data set for training tem-

plates using images aligned using the eye-center locations

from 250 of these subjects and their poses. Recall that

the only difference between the approach for face recog-
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Table 1: Rank-1 ID rate and VR at 1% FAR (Italics) for ℓ∞-DIKF against five previous benchmarks for the MPIE database.

L60◦ L45◦ L30◦ L15◦ R15◦ R30◦ R45◦ R60◦ All

Pixel [31] 0.4 (4.3) 0.4 (4.3) 8.8 (7.6) 15.7 (17.3) 24.9 (20.9) 9.6 (11.6) 1.2 (5.7) 0.8 (5.0) 5.6 (3.7)

PCA [31] 2.4 (3.6) 1.2 (4.3) 18.5 (9.6) 24.5 (20.1) 31.3 (23.3) 18.1 (11.6) 2.0 (7.2) 2.4 (5.0) 10.1 (7.9)

Prabhu et al. [31] 44.9 (26.4) 65.0 (37.1) 86.7 (59.4) 97.6 (75.5) 93.2 (71.7) 83.5 (49.0) 65.0 (45.0) 43.1 (29.7) - (-)

Heo et al. [15] - (-) - (-) 87 (-) 96 (-) 93 (-) 90 (-) - (-) - (-) - (-)

Abiantun et al. [1] - (-) 51.00 (-) 85.94 (-) 97.18 (-) 97.18 (-) 87.95 (-) 53.41 (-) - (-) - (-)

ℓ∞-DIKF 27.7 (21.7) 81.9 (64.7) 92.4 (77.9) 98.8 (97.6) 99.6 (98.8) 94.4 (76.7) 83.1 (55.8) 28.1 (21.7) 75.75 (49.9)

ℓ1-DIKF 4.4 (0.8) 31.3 (31.3) 61.5 (60.2) 98.8 (96.8) 99.6 (99.2) 64.3 (64.3) 28.1 (36.9) 8.0 (11.2) 49.5 (36.4)

NDP-ℓ∞ 2.8 (1.6) 1.6 (2.4) 6.4 (6.0) 84.7 (75.9) 92.0 (79.5) 18.5 (21.7) 4.4 (2.0) 2.4 (1.2) 26.6 (23.2)

NDP-ℓ1 0.4 (0.4) 0.4 (0.4) 0.8 (1.6) 64.7 (28.5) 56.6 (55.8) 3.2 (2.8) 0.4 (0.1) 0.4 (0.4) 15.9 (6.1)
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Figure 6: ROC curves for LFW evaluation under (L) Unsupervised proto-

col, and (R) under Image-Restricted, Label-Free Outside Data protocol.

Table 2: LFW results for the two protocols [18].

Unsupervised Protocol

Approach Results AUC

Proposed ℓ∞-DIKF 0.9154

SD-MATCHES, 125 × 125 [10], aligned 0.5407

H-XS-40, 81 × 150 [10], aligned 0.7547

GJD-BC-100, 122 × 225 [10], aligned 0.7392

LARK unsupervised [33], aligned 0.7830

LHS [34], aligned 0.8107

Pose Adaptive Filter (PAF) [40] 0.9405

MRF-MLBP [4] 0.8994

MRF-Fusion-CSKDA [5] (no ROC) 0.9894

Spartans [22] 0.9428

Image-Restricted, Label-Free Outside Data Protocol

Approach Results µ ± SE

Proposed ℓ∞-DIKF 0.8867±0.0046

Combined b/g samples based [39], aligned 0.8683±0.0034

LBP + CSML [27], aligned 0.8557±0.0052

CSML + SVM [27], aligned 0.8800±0.0037

High-throughput brain-inspired [30], aligned 0.8813±0.0058

LARK supervised [33], aligned 0.8510±0.0059

DML-eig combined [41], funneled, aligned 0.8565±0.0056

SFRD + PMML [9] 0.8935±0.0050

Pose Adaptive Filter (PAF) [40] 0.8777±0.0051

Convolutional DBN [20] (no ROC) 0.8777±0.0062

Sub-SML [7] 0.8973±0.0038

VMRS [6] (no ROC) 0.9110±0.0059

DDML [16] 0.9068±0.0141

LM3L [17] 0.8957±0.0153

Hybrid on LFW3D [13] 0.8563±0.0053

Spartans [22] 0.8969±0.0036

MSBSIF-SIEDA [28] 0.9463±0.0095

nition and pose estimation is that in Algorithm 1, G mod-

els pose variation for face recognition and subject variation

for pose estimation (thereby being a common single frame-

work for both tasks). We train on the 250 subjects with their

poses and then test on the 1,500 images of the remaining

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate

V
e

ri
�

ca
ti

o
n

 R
a

te

 

 

`1-DIKF

`1-DIKF

NDP-`1

NDP-`1

VR EER Rank-1

ℓ∞-DIKF 40.70 11.71 86.47

ℓ1-DIKF 28.84 18.27 79.07

NDP-ℓ∞ 15.91 28.03 65.80

NDP-ℓ1 4.67 34.22 60.40

Figure 7: Pose Estimation results on a subset of the large-scale mugshots

database generated in Section 5.1 (testing on 1,500 images).

100 subjects. For each test image, we extract a subject-

invariant pose-specific DIKF. We then match all features

across each other and verify using the ground truth pose

labels (15 poses).

Results. Fig. 7 presents the ROC curves and statis-

tics obtained for this experiment. We find that ℓ∞-DIKF

achieves a much better accuracy of 86% using only the

two eye-center coordinates under this challenging protocol,

thereby demonstrating the efficacy of the approach.

6. Conclusions

This paper presents a ‘bells and whistles’ free approach

to learn or extract discriminative features that are invariant

to unitary transformations. The theoretical results allow dis-

criminative and kernelized features based on unitary ker-

nels, to achieve group invariance through moments, thereby

allowing for much more complex models to guarantee in-

variance. It proposes a single framework for face recogni-

tion and pose estimation and the practical algorithm used

was always restricted to be ‘simple’, all the while work-

ing on raw-pixels. Yet, DIKF outperforms many previous,

more complex methods and achieves (MPIE) or is on par

with the state-of-the-art (LFW). The sequential generation

of invariance is able to handle much more challenging pro-

tocols, unlike pooling over the traditional NDP. Although

we focus only on face recognition and pose estimation, the

results provide more evidence towards the hypothesize that

perhaps a careful balance between invariance and selectivity

in important for general vision tasks.
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