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Abstract

Multiple robots could perceive a scene (e.g., detect ob-
jects) collaboratively better than individuals, although eas-
ily suffer from adversarial attacks when using deep learn-
ing. This could be addressed by the adversarial defense, but
its training requires the often-unknown attacking mecha-
nism. Differently, we propose ROBOSAC, a novel sampling-
based defense strategy generalizable to unseen attackers.
Our key idea is that collaborative perception should lead to
consensus rather than dissensus in results compared to indi-
vidual perception. This leads to our hypothesize-and-verify
framework: perception results with and without collabora-
tion from a random subset of teammates are compared until
reaching a consensus. In such a framework, more team-
mates in the sampled subset often entail better perception
performance but require longer sampling time to reject po-
tential attackers. Thus, we derive how many sampling tri-
als are needed to ensure the desired size of an attacker-free
subset, or equivalently, the maximum size of such a subset
that we can successfully sample within a given number of
trials. We validate our method on the task of collaborative
3D object detection in autonomous driving scenarios.

1. Introduction
Perception is a fundamental capability for autonomous

robots to understand their surroundings [1–3]. Single-
robot perception suffers from long-range or occlusion is-
sues which stem from limited sensing capabilities and in-
adequate individual viewpoints [4]. Therefore, collabora-
tive perception (co-perception) is proposed to provide more
viewpoints for each robot via communication, so that robots
can see further and better [5–7].

In literature, raw-data-level and decision-level fusion
both demonstrate satisfactory performance in terms of ro-
bustness and precision [8, 9]. The recent development
of deep learning has revolutionized many fields including
robotic perception, and feature-level fusion has been pro-
posed in which intermediate representations from a deep
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Figure 1: Overview of ROBOSAC. Ego-robot aims to find
several benign collaborators with a hypothesize-and-verify
procedure until reaching a consensus or using up the sam-
pling budget. Consensus is checked between the results
with and without the selected teammates.

neural network (DNN) are shared amongst robots. Com-
pared to raw-data-level and decision-level fusion, feature-
level fusion is easy-to-compress and maintains contextual
information, further enhancing the performance-bandwidth
trade-off in multi-robot perception [5, 10–12].

Although the original motivation for collaborative per-
ception is to promote resilience and robustness via infor-
mation sharing, the communication channel could poten-
tially become a wide-open backdoor in DNN-based percep-
tion models due to the well-known adversarial vulnerability
of DNNs [13]. Prior work has shown that a maliciously-
crafted imperceptible perturbation added on the shared fea-
ture can drastically alter the perception output, jeopardizing
the perception system [14]. To solve the safety concerns,
adversarial training has been exploited [14], yet it intro-
duces extra overhead during training and fails to generalize
to unseen attackers [15]. Besides, adversarial training may
lead to a small loss of accuracy [16]. In a word, it is still
non-trivial to achieve computationally-efficient and gener-
alizable adversarial defense in collaborative perception.

In this work, different from applying adversarial train-
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ing after indiscriminately using all messages, we propose
to enable the ego-robot to intelligently select benign col-
laborators from teammates, instead of naively trusting all
the teammates. Inspired by random sample consensus
(RANSAC) in robust estimation [17], we propose ROBust
cOllaborative SAmple Consensus (ROBOSAC), a general
sampling-based framework for adversarially robust collab-
orative perception. Our key idea is that the robot is sup-
posed to reach a consensus with its teammates after collab-
oration, rather than largely diverging from its individual per-
ception. Specifically, ROBOSAC utilizes the hypothesize-
and-verify workflow: the robot samples a subset of team-
mates and compares the results with and without the sam-
pled teammates. After the consensus is verified, indicat-
ing no attackers among us, the robot can output the per-
ceptual results generated in collaboration with teammates
for further decision-making, as shown in Fig. 1. Differ-
ent from the widely-used adversarial training, ROBOSAC
is attacker-agnostic and thus can easily generalize to unseen
adversarial learning algorithms.

Meanwhile, ROBOSAC can be customized for either
strong performance or high efficiency: as more benign
teammates leading to better performance require more com-
putation to reject the attackers, there exists a performance-
computation trade-off in ROBOSAC. Formally, under vari-
ous attacker ratios, we can compute the maximum number of
attacker-free collaborators that could be found given a spe-
cific sampling budget, and the upper bound of the number of
sampling ensuring a desired number of benign teammates,
all for achieving a guaranteed consensus probability. Addi-
tionally, we propose an adaptive probing approach to handle
the scenario of unknown attacker ratios, starting from trust-
ing all the teammates and then gradually becoming more
vigilant. Our contributions are summarized as:

• We develop ROBOSAC, a scalable, generalizable, and
generally-applicable adversarially robust collaborative
perception framework via multi-robot consensus.

• We propose aggressive-to-conservative probing (A2CP)
with retrospect to estimate the attacker ratio efficiently.

• We conduct experiments on collaborative 3D object de-
tection in safety-critical autonomous driving to validate
the effectiveness of ROBOSAC.

2. Related Works
Collaborative perception. To solve the fundamental

issues of single-robot perception such as limited field-of-
view [18–21], multi-robot collaboration has been exploited
to ameliorate the precision, robustness, and resilience of the
perception system [22]. Previous works primarily investi-
gate multi-robot perception in the aerial scenario [10,23,24]
and autonomous driving [5, 8, 25], in different tasks such

as object detection, semantic segmentation, and depth es-
timation. There are three kinds of communication strate-
gies in multi-robot perception: (1) raw-data-level fusion, (2)
feature-level fusion, and (3) output-level fusion. Amongst
all three methods, feature-level fusion transmits learned in-
termediate representations of deep neural networks. Since
the intermediate representations are easy to compress and
are equipped with contextual knowledge of the environ-
ment, feature-level fusion demonstrates better performance-
bandwidth trade-off, thus is widely applied in autonomous
robots [5, 10, 11, 26]. Nevertheless, the adversarial robust-
ness of feature-level fusion is underexplored.

Adversarial perception. Adversarial vulnerability in
DNNs [13] can endanger the learning-based single-robot
perception systems in safety-critical scenarios like au-
tonomous driving [27–30]. For multi-robot perception, [14]
reveals that an indistinguishable adversarial noise added on
the shared intermediate representation can result in a lot of
false detections. Adversarial attack can be classified into
white-box attack and black-box attacks [31]. White-box
attacker has full information about the DNNs [13, 32, 33],
while black-box attacker is usually less effective than white-
box attack since attackers have no access to the target mod-
els. The information about the model is obtained through
query [34] or inferred through highly transferable surro-
gate models [35, 36]. For defense, adversarial training is
proposed by incorporating adversarial samples into training
stages, yet it requires the knowledge of attackers. Hence, to
realize a generalizable adversarial defense against unseen
attackers is still non-trivial and underexplored.

RANSAC. Random sample consensus (RANSAC) is
a well-known robust estimation algorithm applicable to
datasets containing a number of outliers. It was first
proposed by Fischler and Bolles to solve Location De-
termination Problem (LDP) [37]. RANSAC employs a
hypothesize-and-verify pipeline to iteratively select a sam-
ple of data points in the process of fitting the optimal model.
At first, RANSAC was largely applied in works in the im-
age domain, and gradually extension work of RANSAC
is proposed, e.g., MSAC (M-estimator SAmple and Con-
sensus) [38] and MLESAC (Maximum Likelihood Estima-
tion SAmple and Consensus) [39]. Currently, RANSAC is
widely used in computer vision [40, 41] and robotics [42],
e.g., to estimate the fundamental matrix and remove out-
lier correspondences in Structure from Motion (SfM) [43].
In this work, we for the first time exploit the idea of sample
consensus in the problem of robust collaborative perception.

3. ROBOSAC
In this section, we present the problem setup for collab-

orative perception under adversarial attacks in section 3.1,
followed by the revisiting of RANSAC in section 3.2 and
the illustration of a general defense framework termed RO-



BOSAC in section 3.3 (attacker ratio known) and sec-
tion 3.4 (attacker ratio unknown).

3.1. Problem setup

Terminology. We first introduce our terminology in this
work. Benign robots that share their truly-observed infor-
mation are termed collaborators. Adversarial robots that
share carefully-crafted harmful messages are termed attack-
ers. The robot that tries to exploit the collaborators’ infor-
mation while protecting itself from attackers is termed ego-
robot. All the robots other than the ego-robot are termed
teammates, including both collaborators and attackers.

Assumption and setup. We consider two scenarios:
(1) unchangeable teammates: the ego-robot communicates
with the same teammates, and (2) changeable teammates:
the ego-robot meets and communicates with different team-
mates. We assume that the attacker ratio is fixed in both
scenarios. Regarding the attack, attackers have access to
the ego-robot’s viewpoint and utilize adversarial learning
to generate imperceptible noises added to its original mes-
sages, to significantly degrade the output of the ego-robot.
Regarding the defense, the ego-robot is not aware of the spe-
cific attacking strategy, but it can identify whether it has
been attacked based on the change in output space.

Objective and challenge. On one hand, the ego-robot
cannot totally trust others and need to carefully use the mes-
sages to avoid being attacked. On the other hand, they
also cannot fully ignore the messages to keep away from
attackers, since they still need complementary information
to enhance their own restricted perception. The objective
for each ego-robot is: given a certain computation budget
for consensus verification, how to make full use of the mes-
sages shared by others while avoiding being attacked? The
challenges for this problem lie in two aspects: (1) general-
izability: how to achieve generalizable defense given that
there could be different and unseen attackers; and (2) scala-
bility: how to realize computationally-efficient defense es-
pecially when there are a large number of teammates.

3.2. Revisit of RANSAC

RANSAC uses a hypothesize-and-verify workflow to ro-
bustly fit a model based on a set of data points in the pres-
ence of noise. The workflow mainly includes three steps:
(1) produce a set of model hypotheses by sampling mini-
mal data points for the fitted model; (2) evaluate hypotheses
with some consensus metrics such as the number of inliers;
(3) choose the best hypothesis. An optional fourth step is of-
ten employed in practice, which refines the chosen hypoth-
esis with all inliers. RANSAC can compute the required
number of sampling to ensure a high probability of at least
one successful sampling under different outlier ratios.

Algorithm 1: Workflow of ROBOSAC
Input: The total number of teammates S, messages from

teammates {Mi}i=1,...,S , message of an ego-robot M0,
perception model fθ , difference measure d, consensus
threshold ε, sampling budget N , attacker ratio η, probability
of at least one successful sampling p

Output: The perception results for the ego-robot Y0 at current
timestamp

1: Obtain the perception results of only using the ego-robot’s
message: Ŷ0 = fθ(M0)

2: Calculate the guaranteed maximum number of collaborators

:s = b ln [1−(1−p)
1
N ]

ln (1−η) c
3: n = 0
4: while n < N do
5: n← n+ 1
6: Sample s teammates {Mj}j=1,...,s B Random sample
7: Obtain the perception results

Ŷs = fθ(M0, {Mj}j=1,...,s)
8: if d(Ŷs, Ŷ0) ≤ ε then B Consensus
9: Y0 = Ŷs

10: break B Early stop
11: else if n = N − 1 then B Dissensus
12: Y0 = Ŷ0 B No collaboration
13: break
14: end if
15: end while

3.3. Workflow of ROBOSAC

One naive solution to the problem is iteratively verify-
ing each teammate based on the consensus in the output
space, yet it is not scalable. We instead propose to itera-
tively sample a subset of teammates until they reach a con-
sensus, given a certain sampling budget. Assume that the
attacker ratio is known as η, and the ego-robot plans to use
the information from s teammates so that it keeps on sam-
pling s teammates until reaching a consensus. The sam-
pling budget is N , and a successful sampling is one that
contains no attackers amongst the sampled s robots. The
detailed procedures for an ego-robot are: (1) produce per-
ception results using its individual observation; (2) sample
s teammates and fuse their messages to generate perception
results; (3) verify the consensus between the results in (1)
and (2); (4) output the results in (2) if there are no attackers,
otherwise, continue to implement (2). Formally, our objec-
tive is to maximize the probability of at least one successful
sampling which is calculated by p = 1 − [1 − (1 − η)s]N .
The workflow is shown in Algorithm 1.

Performance-computation trade-off. Different from
RANSAC, ROBOSAC can be customized for the computa-
tion (budgetN ) or the performance related to the amount of
beneficial information (number of collaborators s). Given a
probability p to ensure that there is at least one successful
sampling within a sampling budget N , the maximum num-



(a) s v.s. N (b) N v.s. s

Figure 2: A numerical example of ROBOSAC (probabil-
ity of at least one successful sampling is 0.99). (a) Guar-
anteed maximum number of collaborators given a certain
sampling budget. (b) The maximum number of sampling
given a desired number of collaborators.

ber of attacker-free collaborators that could be found is:

s = b ln [1− (1− p) 1
N ]

ln (1− η)
c, (1)

which means that the ego-robot is able to have s collabo-
rators to enhance its perception in a safe manner. In turn,
given a probability p to ensure that there is at least one suc-
cessful sampling and a desired number of collaborators s,
we need to sample at most:

N = d ln (1− p)
ln [1− (1− η)s]

e, (2)

which means that the sampled teammates can reach a con-
sensus before the N -th sampling. One numerical example
is illustrated in Fig. 2. Here the probability of at least one
successful sampling is 0.99. In (a), given a sampling bud-
get 5, the ego-robot can make sure to have 4 collaborators
to improve the perception when the attacker ratio is 10%;
in (b), given a desired number of collaborators 5, the ego-
robot can make final decisions before the 12-th sampling
when the attacker ratio is 20%.

3.4. Attacker Ratio Estimation

The ego-robot might not be aware of the attacker ratio
when it enters a novel environment. To estimate the attacker
ratio as quickly as possible, we develop an Aggressive-to-
Conservative Probing (A2CP) approach, which starts from
trusting all teammates and gradually reduces the number of
sampled teammates if the previous attempt fails. The basic
idea is that once we find a consensus subset with s robots,
the ratio of benign collaborators will not be less than s

S ,
where S is the total number of teammates. Take S = 5 as
an example, we pre-define an array of discretized possible
ratios in ascending order R = [0.0, 0.2, 0.4, 0.6, 0.8] and
start from probing η = 0.0 (s = 5) which indicates no
attackers. If the first attempt succeeds, there is no need to
probe other ratios and the ego-robot can collaborate with all

Algorithm 2: Workflow of A2CP with Retrospect
Input: The number of teammates S, messages from teammates
{Mi}i=1,...,S , message of an ego-robot M0, perception
model fθ , difference measure d, consensus threshold ε,
ascending-ordered array of discretized possible ratios
{Rk = hk/S}k=1,2,...,K (hk ∈ [1..S)), sampling budget
N > K, probability of at least one successful sampling p

Output: The estimated attacker ratio η̂
1: η̂ ← 1.0
2: {Uk}k=1,...,K ← 0 B Upper bound of attempts
3: {Tk}k=1,...,K ← 0 B Counter of attempts
4: for k in [1, . . . ,K] do
5: Uk = d ln (1−p)

ln [1−(1−Rk)
S(1−Rk)]

e
6: end for
7: for each frame in the scene do
8: n = 0
9: Obtain the individual results: Ŷ0 = fθ(M0)

10: while n < N and T < U do
11: for k ∈ [1, . . . ,K] do
12: if Tk <Uk then
13: n← n+ 1
14: η ← Rk

15: Sample S(1− η) teammates {Mj}j=1,...,S(1−η)
16: Obtain the perception results

Ŷs = fθ(M0, {Mj}j=1,...,S(1−η))

17: if d(Ŷs, Ŷ0) ≤ ε then B Consensus
18: η̂ ← η B Update
19: Tk ← Uk, ...,TK ← UK

B Stop probing higher ratios
20: break
21: else B Dissensus
22: Tk ← Tk + 1
23: end if
24: end if
25: end for
26: end while
27: end for

teammates. If not, we continue to probe a higher ratio with
fewer collaborators (in this case η = 0.2 and s = 4) and
stop testing the unprobed ratios once consensus is verified.

Note that we further propose a retrospect-based mecha-
nism to avoid missing the probed lower ratios due to ran-
domness. For example, if probing of η = 0.2, s = 4 fails
yet probing of η = 0.4, s = 3 succeeds, we cannot con-
clude the ratio yet because it is more difficult for the previ-
ous more aggressive attempt to reach a consensus. Actually,
there could be either 1 or 2 attackers. We continue to probe
η = 0.2, s = 4 until enough attempts have been made. We
use Tk to count the number of probing for a ratio Rk, and
Uk to denote the upper bound probing attempt of this ratio,
which is derived from equation (2). See Algorithm 2 for the
overall workflow of the proposed attacker ratio estimator.



4. Adversarially Robust Collaborative 3D De-
tection with ROBOSAC

In this section, we apply our ROBOSAC framework in
collaborative 3D object detection under adversarial attacks
in autonomous driving. Vehicle-to-vehicle (V2V) commu-
nication could improve the robustness, safety, and efficiency
of autonomous driving systems in light of more viewpoints
and computational resources. However, there are still safety
concerns regarding the communication channel [14]. We
consider that multiple vehicles located in the same geo-
graphical location are sharing information. An ego-vehicle
attempts to maximize the usage of benign collaborators
while defending against attackers.

Preliminaries. Each vehicle indexed by i (i = 0, . . . , S)
is equipped with a 3D LiDAR sensor to generate a bird’s
eye view (BEV) occupancy grid map Bi ∈ {0, 1}W×L×H
defined in its local coordinate. Here S is the total number
of teammates, the dimensions W , L, and H respectively
denote the width, length, and height of the BEV map.

Collaborative 3D detection. A collaborative detector
shared amongst vehicles is composed of an encoder de-
noted by fψ , an aggregator and a decoder which are col-
lectively denoted by fθ for simplicity. fψ will take the
BEV map as input and generate an intermediate feature map
Mi ∈ R

W
K ×

L
K×C = fψ(Bi) as the transmitted message,

where K indicates the downsampling scale in the neural
network, and C denotes the feature dimension. After de-
ciding to use the messages from s teammates {Mj}j=1,...,s

(s ≤ S), the ego-vehicle indexed by 0 will use fθ to pro-
duce a set of bounding boxes Ŷs = fθ(M0, {Mj}j=1,...,s).
During training, fψ and fθ are jointly learned by minimiz-
ing the detection loss Ldet(Ŷs,Ygt), where Ygt denotes
ground-truth boxes. Ldet includes a classification loss and
a regression loss following existing detectors [44].

Adversarial attack. We consider the white box attack
where the attacker has full access to the target model be-
cause the detector model is shared amongst vehicles. The
adversarial message is generated by gradient-based opti-
mization to maximize the vehicle’s detection errors. Specif-
ically, at inference, model parameters are frozen, and the
objective for attacker v is to fool the ego-vehicle by sending
an indistinguishable adversarial message Mv + δ:

max
||δ||≤∆

Ldet(fθ(M0,Mv + δ, {Mj}j 6=v2),Ygt), (3)

where δ ∈ R
W
K ×

L
K×C with the same size as Mv is the op-

timized perturbation, and is constrained by ∆ to ensure its
imperceptibility. In practice, the detection results of solely
using the message of ego-vehicle Ŷ0 = fθ(M0) could re-
place Ygt in case the ground-truth is not available. Such
kind of carefully-crafted adversarial messages can create a
lot of false positives/negatives for the ego-vehicle, which
raises concerns for safety-critical autonomous vehicles.

Adversarial defense. To defend against such kind of
adversarial messages, and maximize the usage of comple-
mentary messages, the ego-vehicle is supposed to intelli-
gently select teammates to ensure that there are no adver-
sarial messages in the exploited messages {Mj}j=1,...,s,
while maximizing the number of benign collaborators s. To
this end, we use the ROBOSAC framework shown in Al-
gorithm 1. Specifically, the ego-vehicle obtains S messages
{Mi}i=1,...,S from all the teammates, and it samples smes-
sages each time {Mj}j=1,...,s and then verify the consen-
sus between two detections Ŷs = fθ(M0, {Mj}j=1,...,s)

and Ŷ0 = fθ(M0). Since the adversarial learning will re-
sult in a large number of false detections, Ŷs will signifi-
cantly differ from Ŷ0 once there exist adversarial messages
in {Mj}j=1,...,s. In 3D detection, the difference measure d
is represented by the intersection-over-union (IoU) between
two sets of boxes after Hungarian matching [45], and a con-
sensus threshold ε is used to determine whether or not there
is consensus. The ego-vehicle will keep on sampling un-
til the sampled vehicles reach a consensus. In practice, we
may want to give a certain sampling budget N to avoid too
many computations for Ŷs = fθ(M0, {Mj}j=1,...,s), and
the ego-vehicle can compute the maximum number of be-
nign collaborators which could be found, and use it as the
sample size s based on Eq. 1, with the given sampling bud-
get as well as the attacker ratio. In a word, the ego-vehicle
can have s collaborators in consensus to aid in the promo-
tion of its perception within N sampling steps.

5. Experiments
5.1. Experimental setup

Dataset and detector. We employ V2X-Sim [22] to ver-
ify our method. The dataset contains 5Hz LiDAR point
clouds recorded by different vehicles at the same intersec-
tion. Regarding the multi-robot detector, we employ a sim-
ple average-based collaborative perception method which
calculates the mean of the feature maps from different ve-
hicles and feeds the aggregated features into the decoder to
generate the final perception results. The detector backbone
is a simple anchor-based method [44]. We follow the train-
ing procedures and evaluation protocols in [11].

Adversarial attack implementation. We use three at-
tackers: projected gradient descent (PGD) [46], Carlini &
Wagner Attack (C&W) [47], and basic iterative method
(BIM) [33]. The number of iterations in PGD/BIM is set
to 15 (iteration of C&W is set to 30), the step size is set to
0.1, and the magnitude is ∆ = 0.5. The consensus thresh-
old is set to ε = 0.3. We use average precision (AP) at IoU
thresholds of 0.5 and 0.7 to evaluate the detection perfor-
mance, and we utilize the performance of detection to eval-
uate the effectiveness of our defense strategies. We adopt
scene #8 with 100 frames (each frame contains 6 vehicles).



RANSAC Actual Steps Success
η s N Avg Min Max Rate

0.2

1 3 1.32 1 6 0.96
2 5 1.76 1 6 0.97
3 7 2.31 1 7 1.00
4 9 4.89 1 19 0.89

0.4
1 6 1.80 1 8 0.98
2 11 3.06 1 11 1.00
3 19 10.36 1 39 0.86

0.6
1 10 2.46 1 8 1.00
2 27 8.29 1 46 0.97

0.8 1 21 4.73 1 17 1.00

Table 1: Validation of our derivation under different at-
tacker ratio η and desired number of collaborators s.

Setup AP Avg. FPSIoU=0.5 IoU=0.7 Steps

Changeable teammates 77.5 74.9 2.73 14.2
Unchangeable teammates 78.8 76.5 2.30 36.8

Table 2: Comparison between changeable and un-
changeable teammates: averaged over 10 experiments.
Agent 1 in scene #8, with η = 0.2, s = 3, N = 7, ε = 0.3

Unchangeable and changeable teammates. In the sce-
nario of unchangeable teammates, the ego-robot can main-
tain a stable partnership with benign collaborators since
once a desired number of attacker-free teammates is found,
the ego-robot can identify the attackers and ignore their
messages for the following frames. In the scenario of
changeable teammates, we need to deploy ROBOSAC at
each frame, since now the ego-robot fails to rely on its past
judgments of the teammates. For the first scenario, the com-
putational burden introduced by ROBOSAC is negligible
because only several initial frames need consensus verifi-
cation. For the second scenario which is more challeng-
ing, our objective is to achieve a performance-computation
trade-off under different conditions.

5.2. Quantitative results

Derivation validation. Given the attacker ratio η and
the desired number of collaborators s, the maximum num-
ber of sampling N could be given by Eq. 2 based on a cer-
tain probability p = 0.99. We validate this formulation by
allowing the ego-vehicle to keep on sampling until reaching
consensus, under different configurations of η and s, and
the results are shown in Table 1. For each processed frame,
it is considered a success if the actual steps taken to achieve
consensus are not larger than the computed N , and the ratio
of successful frames is referred to as the success rate. We
see that a consensus can be mostly achieved within the the-

Method AP Success
IoU=0.5 IoU=0.7 Rate

Upper-bound++ 81.3 79.8 −
Upper-bound 78.0 76.0 −

Sampling budget: 7 77.3 74.7 1.00
Sampling budget: 5 76.6 74.1 0.96
Sampling budget: 3 74.8 73.2 0.77
Sampling budget: 1 69.8 67.4 0.45

Lower-bound 63.5 60.1 −
No Defense 39.7 39.0 −

Table 3: Detection performance with different sampling
budgets when η = 0.2 and s = 3. Upper-bound++ denotes
collaborative perception with all 5 benign robots. Upper-
bound means collaborative perception with 3 out of 5 be-
nign robots. Lower-bound denotes individual perception.

Figure 3: Performance-computation trade-off plot.

oretical upper-bound N . Meanwhile, the average sampling
steps taken for consensus are usually less than 50% of N .

Unchangeable teammates. Since the teammates are not
changed, so once the attackers are identified, the ego-robot
could avoid being attacked in the following frames. The re-
sults in terms of performance and speed are shown in Ta-
ble 2. We see that the frames-per-second (FPS) is 36.8,
which is satisfactory for real-time applications if the RO-
BOSAC is only needed at the initial stage.

Changeable teammates. In the scenario of changeable
teammates, the ego-robot needs to identify the collaborators
at each frame. Since the actual sampling steps are usually
much less than the upper bound, we can lower the sampling
budget in practice to pursue a balance between performance
and computation. Assume we aim to find three attacker-
free teammates when η = 0.2, the upper bound of the sam-
pling budget is then N = 7. To save computations, we set
the sampling budget as N = 1, 3, 5, 7 respectively and re-



Method AP Success FPSIoU=0.5 IoU=0.7 Rate

w/ Temporal Consistency 75.8 73.6 0.85 19.2
w/o Temporal Consistency 77.5 74.9 0.98 14.2

Table 4: Comparison between w/ temporal consistency
and w/o temporal consistency: agent 1 in scene #8, with
η = 0.2, s = 3, N = 7, ε = 0.3

Method AP
IoU=0.5 IoU=0.7

Upper-bound++ 81.8 79.6

ROBOSAC (against PGD attack) 77.9 75.6
PGD Trained (White-box Defense) 75.6 73.0

ROBOSAC (against C&W attack) 74.5 71.1
C&W on PGD Trained (Black-box Defense) 43.2 40.8

Lower-bound 64.1 62.0
No Defense (PGD attack) 44.2 43.7

Table 5: Quantitative results of generalizability test on
agent 1 in scene #8, with η = 0.2, s = 3, ε = 0.3. The
average sampling step and FPS are 2.67 and 15.5. Black-
box defense means that the defense algorithm is unaware
of the attacker, while white-box indicates the defense al-
gorithm knows the attacker and involves the corresponding
adversarial noise during training. Upper-bound++ denotes
collaborative perception with all 5 benign robots. Lower-
bound denotes individual perception.

port the detection performance as well as the success rate
(successfully find three attacker-free teammates within the
specified sampling budget) in Table 3. We find that limit-
ing the sampling budget to 5 still maintains a success rate
of 0.96. Meanwhile, only sampling once in each frame
(about 15% of N ) can still achieve a success rate of 0.45
and an AP of 69.8/67.4 which are still better than solely
using ego-vehicle’s information (63.5/60.1). In addition,
we conduct precision-computation trade-off analyses under
different N − s pairs. As shown in Fig. 3, detection preci-
sion is higher when there are more collaborators, at the cost
of more computations to reject attackers.

Temporal consistency. We further propose to use tem-
poral consistency instead of the difference between col-
laborative and individual perception to save computations.
Specifically, we compare the current output with the previ-
ous output for consensus verification. This can help to im-
prove efficiency because we can reduce the times of model
forward caused by individual perception. The results are
shown in Table 4. We see that FPS is improved from 14.2
to 19.2, yet the performance is still comparable to using in-
dividual perception results as a reference.

Generalizability. We compare the generalizability of

Ablation AP Success
IoU=0.5 IoU=0.7 Rate

Threshold ε = 0.1 77.5 75.4 0.96
Threshold ε = 0.2 78.0 75.0 0.98
Threshold ε = 0.3 77.8 76.1 1.00
Threshold ε = 0.4 76.7 74.7 0.95
Threshold ε = 0.5 76.1 73.9 0.87

PGD, 10 iterations 78.3 75.2 0.95
PGD, 15 iterations 77.8 76.1 1.00
BIM, 10 iterations 77.8 75.2 0.95
BIM, 15 iterations 77.5 74.5 0.97

Table 6: Quantitative results of ablation studies.

Metrics Attacker Ratio
0.0 0.2 0.4 0.6 0.8 1.0

Frame # to reach final estimation 0 0.8 2.1 3.1 1.3 0
Final estimated ratio 0.0 0.22 0.42 0.60 0.80 1.0
Error of estimation 0.0 0.02 0.02 0.0 0.0 0.0

Total sampling steps 1 8.2 20.5 37.9 59 77
Success Rate 1.0 0.9 0.9 1.0 1.0 1.0

Table 7: Quantitative results of attacker ratio estima-
tion on agent 1 in scene #8, with N = 5, ε = 0.3,R =
[0.0, 0.2, 0.4, 0.6, 0.8]. All results are averaged over 10 re-
peated experiments.

ROBOSAC to adversarial training. We use PGD [46]
which is the strongest one-stage gradient-based adversar-
ial attack during adversarial training. The results are shown
in Table 5: although adversarial training with PGD could
effectively defend the PGD attack with a precision 75.6
(IoU=0.5), using a different attacker, Carlini & Wagner
Attack [47], will largely degrade the precision to 43.2
(IoU=0.5). In contrast, our method can achieve compara-
ble precision under both two attackers (77.9@IoU0.5 under
PGD attack, and 74.5@IoU=0.5 under C&W attack). Our
better generalizability stems from being attacker-agnostic:
we do not rely on the knowledge of attackers while adver-
sarial training does.

Attacker ratio estimation. In practice, using a budget
of five samplings within a single frame yields acceptable
results. As shown in Table 7, within the initial few frames,
the actual attacker ratio can be efficiently probed. The esti-
mated ratio can then be used to carry out ROBOSAC steps.

5.3. Ablation studies

We conduct ablation studies on consensus threshold as
well as attack approaches (the other parameters are N = 7,
s = 3, η = 0.2), and the results are shown in Table 6.
Regarding the consensus threshold, a lower threshold indi-
cates a lesser tolerance for outcomes that differ from indi-
vidual results, whereas a higher threshold indicates a higher



Figure 4: Visualization of perception results on V2X-Sim [22]. Red boxes denote predictions, and green boxes are ground
truth. Upper-bound, lower-bound have the same meanings with that in Table 3.

likelihood of believing the variation is good. We find that
our method achieves comparable performance with differ-
ent consensus threshold. Meanwhile, our method remains
unaffected by the type of attacker.

5.4. Computational Cost

The performance of our method depends mainly on the
actual number of sampling steps: each sample implies a
forward propagation. On an NVIDIA RTX3090 GPU, the
baseline detector we use takes 17ms on average in per-
forming ego-only predictions, and 27ms on average in per-
forming collaborative predictions. The dataset is collected
at 5Hz, meaning that we can use a time budget of about
200ms to output the final results of a single frame, which
corresponds to a maximum of 7 samplings per frame. Con-
sidering that the actual average sampling steps are much
smaller than the sampling budget, we can also sample with
more desired attacker-free teammates to obtain a better
performance-computation trade-off, as shown in Fig. 3.

6. Limitations
We assume that the attacker ratio is fixed, yet the at-

tacker ratio may vary in practice. Besides, we assume that

although the input adversarial noise is imperceptible, its ef-
fect on the network output is significant (see Fig. 4), which
has been observed in most existing attacking methods. Fu-
ture attackers might develop dangerous yet subtle perturba-
tions in both the input and output to bypass our “outlier-
detection-based” defense mechanism, although currently,
we are not aware of any such attacks.

7. Conclusion

In this work, we propose a novel adversarially robust
collaborative perception framework termed ROBOSAC. It
makes as much use of messages from benign collabora-
tors as possible while resisting adversarial attackers within
a certain computation budget. In addition, we develop an
aggressive-to-conservative probing method with retrospect
for attacker ratio estimation in scenarios of unknown ratios.
We validate our method in collaborative 3D detection for
autonomous driving. Unlike adversarial training, our ap-
proach relies on the consistency in output space rather than
the knowledge of a specific adversarial noise, thus is more
generalizable. We believe our work will further improve the
adversarial robustness of multi-robot systems.
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