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Abstract

Automatic face recognition in the wild still suffers from low-quality, low reso-
lution, noisy, and occluded input images that can severely impact identification
accuracy. In this paper, we present a novel technique to enhance the quality of
such extreme low-resolution face images beyond the current state of the art. We
model the correlation between high and low resolution faces in a multi-resolution
pyramid and show that we can recover the original structure of an un-seen extreme
low-resolution face image. By exploiting domain knowledge of the structure of
the input signal and using sparse recovery optimization algorithms, we can recover
a consistent sparse representation of the extreme low-resolution signal. The pro-
posed super-resolution method is robust to noise and face alignment, and can han-
dle extreme low-resolution faces up to 16x magnification factor with just 7 pixels
between the eyes. Moreover, the formulation of the proposed algorithm allows for
simultaneous occlusion removal capability, a desirable property that other super-
resolution algorithms do not possess, to the best of our knowledge. Most impor-
tantly, we show that our method generalizes on real-world low-quality surveillance
images, showing the potentially big impact this can have in a real-world scenario.
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1. Introduction

During the 2013 Boston Marathon on April 15, two pressure cooker bombs ex-
ploded at 2:49 p.m. EDT near the finish line, killing 3 spectators and injuring 264
others. Shortly after, the FBI personnel investigating the scene acquired footage
of the explosion [1] and the preceding events, including placement of the bombs,
from street surveillance cameras. However, due to the grainy, low-resolution (LR)
quality of the images obtained, current commercial face recognition software was
unable to recognize the primary suspects involved in the bombing, and the author-
ities had to subsequently resort to crowdsourcing to obtain higher quality images
of the suspects from other sources such as cell phone photos. This crowdsourcing
resulted in higher resolution images on April 19, which could have been processed
by commercial face recognition systems [2]. However, the initial low-resolution
images (Figure 1(a)) were unsuitable for this task. The incident highlighted the
importance of image quality towards real-world face recognition, and the need for
development of algorithms to overcome the deterioration caused by unconstrained
LR input footage.

(a) Surveillence Image (b) Zoom-in (c) Canonical SuperRes

(e) Canonical Mugshot(d) Suspect Mugshot

Enhance

Register

Match

Figure 1: (a) Surveillance image of the Boston Marathon bombing suspect, (b) zoom and crop of (a)
showing lack of visual details for recognition, (c) our super-resolution of the same face displayed
in a canonical format, (d) a high-resolution image of the same suspect, (e) the same high-resolution
image in the canonical format for matching.

Super-resolution (SR) refers to the resolution enhancement of the visual in-
formation contained in a low-resolution image. Low-resolution images are the
result of how far the object of interest is from the camera, the specifications of
the imaging sensor (and its tolerance to noise and low-light sensitivity), and the
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quality of the optical lenses attached to the sensor (represented by the modulation
transfer function (MTF)). The widespread availability of affordable digital imaging
devices, such as cell phone cameras, surveillance cameras, etc., comes as a result
of the recent mass production and the shrinking in size of these devices. However,
this does not always translate into increased image quality, and typically the visual
quality of footage obtained by these low-cost devices remains poor.

The holy grail of face recognition is to build a system that can handle real-
world data. This data emerges from surveillance footage (as in the case of the
Boston Marathon incident), or mobile devices used at a distance, where it is not
only the viewpoint that poses a challenge, but also the low-resolution image. Even
though face recognition algorithms do not require megapixel images, having high-
resolution (HR) texture information goes a long way towards improving recogni-
tion performance [3]. Most algorithms can produce respectable results with image
resolution as low as 50� 50 pixels [4]. The problem is that most faces in the wild
do not even meet these minimum size requirements. For instance, most surveil-
lance cameras currently deployed consist of a wide-angle lens (to capture as much
of the scene as possible) coupled to a 720p HD (1280� 720) pixel sensor. A sub-
ject standing a few meters away will not reproduce a face with a significant number
of pixels between the eyes, rendering it impossible even for a human operator to
identify. In one of the earlier studies on this same topic, Bachmann [5] observes
that there is an abrupt fall in identification efficiency by human operators when the
faces become smaller than 24� 18 pixels.

Super-resolution, which aims to reverse this last problem, is a severely ill-posed
problem, where the solution does not always exist, and when it exists, it is not
unique and is very sensitive to perturbation in the input. Despite years of active
research, it still remains an open challenge, particularly when trying to break the
4x magnification barrier in resolution. In this paper, we present a simple yet novel
technique to attempt to solve the low-resolution problem. We rely on sparse fea-
ture recovery and a multi-resolution face model to develop a single-image super-
resolution (or face hallucination) technique. If we can achieve great results using
single image resolution, we can enhance this solution using a sequence of images.

One important fact worth mentioning is that, degradations such as extremely
low-resolution and facial occlusions usually come in a bundle. To the best of our
knowledge, the current state-of-the-art super-resolution algorithms can not and do
not deal with occlusion removal. They usually rely on another occlusion removal
module should they choose to do so. Our proposed method, however, can simul-
taneously deal with the super-resolution as well the occlusion removal tasks under
the same framework, a very desirable property that other super-resolution algo-
rithms do not possess. This multi-tasking capability is possible due to the formu-
lation of our algorithm that treats both super-resolution and occlusion removal as a
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missing data recovery challenge.
This paper is structured as follows: In Section 2, we first briefly overview some

of the classical approaches to face super-resolution. In Section 3, we develop our
novel sparsity-based approach towards face super-resolution, which involves learn-
ing a face model based on a multi-resolution pyramid of faces. In Section 4, we
evaluate our method on synthetic low-resolution images (obtained from downsam-
pling the high-resolution images). We also show that our method is inherently
robust to noise by reformulating it as a Bayesian approach. Next, we show that our
super-resolution algorithm has the occlusion removal capability, in a multi-task
face recovery experiment. In Section 5, we demonstrate the real-world applicabil-
ity of the technique by showing its effectiveness on the Boston Marathon bombing
case. Finally, we conclude our work in Section 6.

2. Related Work

2.1. General Image Super-Resolution
Most single-image super-resolution techniques are limited because they are

constrained by the number of available pixels. Early methods mostly relied on
interpolation techniques, such as nearest-neighbor, bilinear or cubic B-spline in-
terpolation [6] or convolution kernels [7]. Interpolation-based methods assume
global continuity and maintain smoothness constraints that often produce results
with blurred edges and textures which are essentially unusable in a face recognition
framework. Edge-preserving interpolation techniques have been proposed, such
as adaptive splines [8], and POCS (projection onto convex sets) interpolation [9].
Interpolation techniques aware of edge information have also been proposed. Non-
linear interpolation with edge fitting [10] incorporates local edge fitting to avoid
interpolation across edges. Huang et al. [11] introduce a self-exemplar based SR
method by searching recurring patterns within and across scales of the same image.
By further allowing affine and projective transformations on the patterns, the pro-
posed method has reached the state-of-the-art results among all the self-exemplar
based SR methods. Wang et al. [12] propose an ensemble based sparse coding net-
work for single-image super-resolution. Zhang et al. [13] attempt to fuse the brain
atlas from the high-thickness diagnostic MR images that are prevalent for clinical
routines. By incorporating a novel super-resolution strategy, as an extension of the
conventional group-wise registration, the required atlas can be better constructed.

2.2. Face Image Super-Resolution
Super-resolution of face images is slightly different than super-resolution of

general images, because we can make more assumptions about the structure of
the human face, and have face-specific image priors. In their seminal work on
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super-resolution, Baker and Kanade [3] abandon the Markov random fields (MRF)
framework for a more general Bayesian maximum a posteriori (MAP) formulation
which is more suitable for synthesizing global textures as with face images. They
use a large number of training images to compute a multi-resolution pyramid of
features (such as Laplacian and gradients features). Each level of the pyramid
corresponds to a different resolution that is obtained by reducing the original native
full resolution. In testing, given an input low-resolution image, they populate the
top of the pyramid of features (that they call “the Parent Structure”), and for every
pixel location, they exhaustively search (using the nearest-neighbor approach or
gradient descent) the training set for a pixel value that generates a similar feature
vector. Moreover, they use a Bayesian framework to incorporate more than one
input low-resolution images. Assuming the input images have been accurately
aligned together (using control points on the face or a registration method such as
optical flow), the nearest-neighbor search is replaced by a MAP computation that
reflects the likelihood of observing several low-resolution pixel values and a prior
on the high-resolution values.

Liu et al. [14] combine global parametric and local non-parametric models in
a two-step statistical approach. They assume a high and low frequency mixture
model, and for super-resolution, the reconstructed low-frequency information is
inferred by a global linear model that learns the relationship between high- and
low-resolution images, while the reconstructed high-frequency information is cap-
tured by learning the residual between the original high-resolution and the super-
resolution image using a patch-based nonparametric Markov network. In [15],
a simple principal component analysis (PCA)-based global approach has been at-
tempted. Given high-resolution training images, the authors downsample them and
build a PCA subspace of reduced-resolution images, where they project the input
low-resolution image to obtain the PCA coefficients. The authors then use those
low-resolution induced coefficients to reconstruct the high-resolution equivalent
face using the full-resolution eigenfaces. To make sure that the final reconstruction
is “face-like”, they introduce artificial constraints on the coefficient values. These
constraints are a function of the eigenvalues learned from the training of every
principal component.

Yang et al. [16] exploit the properties of sparse image representation for single-
image super-resolution. Their patch-based local approach simultaneously learns
two distinct over-complete dictionaries: one for high-resolution patches, and one
for low-resolution ones. Given an input low-resolution patch, its sparse represen-
tation in the low-resolution dictionary is used to recover a high-resolution patch
from the high-resolution dictionary. Local consistency is achieved by requiring
the patches to overlap, and requiring the high-resolution patches to agree on the
overlapped area. In the specific case of face hallucination, a two-step approach is
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adopted, similar to previous methods. The first step is a global approach to recon-
struct what they call a “medium high-resolution” smooth face using non-negative
matrix factorization (NMF) [17], which is then enhanced with high-frequency in-
formation using the local patch-based approach that makes use of the sparse fea-
ture extraction using the coupled dictionaries learned at the training stage. Another
work [18] also exploits sparsity. The basic idea in this work is to use kernel ridge
regression to learn the mapping between high- and low-resolution images. To avoid
blurring artifacts, a post-processing step that relies on a prior model is employed.

Ma et al. [19] hallucinate the high-resolution image patch using the same po-
sition image patches of each training image. The optimal weights of the training
image position patches are estimated and the hallucinated patches are reconstructed
using the same weights. The final high-resolution face image is obtained by inte-
grating the hallucinated patches.

Gao et al. [20] have proposed a locality-constrained double low-rank repre-
sentation (LCDLRR) method to improve upon position patch based face halluci-
nation. LCDLRR tries to directly use the image-matrix based regression model
to compute the representation coefficients to maintain face structural information.
A low-rank constraint is imposed on the representation coefficients to adaptively
select the training samples that belong to the same subspace as the inputs.

Jiang et al. [21] also try to improve upon the position patch based face super-
resolution approach by incorporating a locality constraint into the least square in-
version problem to maintain locality and sparsity simultaneously. This method is
termed locality-constrained representation (LcR).

Jiang et al. [22] have proposed a coupled-layer neighbor embedding (CLNE)
method which contains the LR and HR layer. The LR layer models the local ge-
ometrical structure of the LR patch manifold which is characterized by the recon-
struction weights of the LR patches. The HR layer is the intrinsic geometry that
can constrain the reconstruction weights geometrically. CLNE can achieve a robust
neighbor embedding by iteratively updating the LR patch reconstruction weights
and the estimated HR patch.

Huang and Wu [23] study the face image super-resolution problem under resource-
limited environment. Their method utilizes multiple local linear transformations
(LLT) to approximate the nonlinear mapping between LR and HR images in the
pixel domain. The affine transformations between LR and HR face patches are
estimated from training examples and the LLT-based reconstruction is achieved by
applying the transformations to all patches of an LR input image, followed by a
refinement step using the POCS algorithm.

Zeng et al. [24] expand the training data for improved facial image SR. Three
constraints (the local structure constraint, the correspondence constraint, and the
similarity constraint) are proposed to generate new training data where local patches
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are expanded with different parameters.
Huang et al. [25] have applied canonical correlation analysis (CCA) to maxi-

mize the correlation between the local neighbor relationship of high and low res-
olution images. CCA is used separately for reconstructing global face appearance
as well as local facial details. An and Bhanu [26] instead propose to use 2D CCA
for better preserving the 2D structure of the faces.

Jiang et al. [27] have proposed a sparse representation based noise robust
super-resolution approach that incorporates smooth prior to enforce similar train-
ing patches having similar sparse coding coefficients. The method fuses LASSO-
based smooth constraint and locality-based smooth constraint to the least squares
representation-based patch representation for obtaining stable reconstruction weights
especially when the noise level of the input LR image is high.

Akyol et al. [28] present a face super-resolution method based on generative
models and utilizes both the shape and texture components. The main idea is that
the image details can be synthesized by global modeling of accurately aligned lo-
cal image regions. In order to achieve sufficient accuracy in alignment, shape re-
construction is considered as a separate problem and solved together with texture
reconstruction in a coordinated manner.

Nguyen et al. [29] provide a comprehensive review of existing super-resolution
approaches for biometric modalities, including face (2D and 3D), iris, gait and
latent prints (fingerprint and palmprint) and other emerging modalities.

The aforementioned face image super-resolution techniques do not tackle very
challenging low-resolution cases, a moderate 4x downsample factor can be found
across the board [19, 20, 21, 23, 24, 25, 26, 27, 28, 29], with the exception of
[22] which deals with 8x downsampling. Our work instead takes on extremely
low-resolution face images with up to 16x downsample factor.

2.3. Deep Learning Based Super-Resolution
More recent advances for image super-resolution include deep learning based

approaches such as [30, 31, 32, 33, 34]. Dong et al. [30] have a seminal work
on image super-resolution using convolutional neural networks, which is termed
SRCNN, and later extend in [31]. This is the very first attempt to tackle the image
super-resolution problem in an end-to-end learnable fashion. Kim et al. [32] come
up with an improved CNN-based SR solution by going deep (20 convolutional
layers), and explicitly modeling the residual image. Their method converges much
faster than SRCNN by utilizing adjustable gradient clipping, and residual learning,
and achieves better SR results. Another work by the same authors [33] explores
recursive filtering in the deep convolutional neural networks. The idea is to re-use
the same filter over and over again on the feature maps recursively before it gets
updated, which essentially allows many intermediate reconstruction outputs to be
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fused at the end. In addition, skip connections are added so that each intermediate
stage gets a direct supervision, which makes the learning more effective and less
prone to gradient vanishing.

With the help of generative adversarial network (GAN), the SRGAN [34] ap-
proach can achieve more photo-realistic 4x super-resolution. The gist is that instead
of minimizing some mean squared loss between the super-resolved image and the
ground-truth high-resolution image as commonly practiced, new adversarial loss
and content loss are used. The adversarial loss is attached to a deep CNN based
discriminator network to differentiate between the super-resolved images and the
original ground-truth high-resolution images and to push the solution to the natural
image manifold, which is a major merit of GAN-based approaches. The content
loss ensures that deep features, say using a VGG-19 network, match between the
super-resolved and the ground-truth images.

3. Feature Extraction to Recover Missing Resolutions

In this section, we present a simple global technique to achieve face super-
resolution by leveraging the ability of sparsity-based methods to solve missing-
data problems [35]. The flowchart of the proposed method is shown in Figure 2. In
a nutshell, we first extract shape-free representations from a set of high-resolution
training face images and formulate the pyramid representation. Then, these pyra-
mid shape-free representations will be used to train a dictionary for later sparse sig-
nal recovery. When a low-resolution face image comes in, the extracted pyramid
shape-free representation will have missing pixels at higher resolution hierarchy.
Through sparse signal recovery and reconstruction using the full dictionary, we can
recover the corresponding high-resolution face image. We will detail the involved
components individually.

3.1. Subspace Modeling to Extract Features Stable Under Missing Dimensions

Global face super-resolution approaches are criticized for not being able to ren-
der sharp edges and high-frequency information, or that PCA-based methods often
degenerate towards the mean face. We disprove this common belief by individu-
ally detailing the fundamentals of our technique. First, we note that the problem
at hand is a texture reconstruction problem. Hence, we need to decouple the shape
information from the texture information.

3.1.1. A Canonical Shape-Free Representation for Accurate Texture Analysis
Super-resolution is principally a texture-driven problem, hence it would be ben-

eficial for our data representation to contain mostly texture features, isolated from
shape of the face. We define “shape” by the x and y coordinates of a specific set of
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Figure 2: Overview of the proposed SSR2 method.

prede�ned landmarks on a face. This shape information is eliminated from the data
by enforcing all faces to adopt the same “mean” face shape before modeling the
subspace,i.e., all facial features, such as eyebrows, eyes, nose, mouth,etc., should
have the same dimensions and locations in all faces. To accomplish this, a simple
global transformation such as af�ne is insuf�cient. We require a local approach,
where every triangle bounded by any three control points can be transformed inde-
pendently.

Figure 3: Canonical shape-free generation module for accurate texture analysis and reconstruction.

In [36], a piece-wise linear warping scheme was introduced, which could be
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used to warp all faces to a particular mean shape. However, such an approach
would introduce discontinuities and other artifacts which would negatively impact
the subspace modeling of the texture information. We choose to make use of an
ef�cient 3D modeling technique called 3D generic elastic models (3DGEM) [37],
and construct a 3D generic structure [38]. We then render all face textures with
this common structure to normalize the shape of the faces. A �owchart of this
technique is shown in Figure 3. This results in a completely shape-normalized
face image, with much smoother rendering free of high-frequency discontinuity
artifacts [35]. In Figure 4, we depict three frontal faces from the MPIE database
[39] with a traditional crop using eye coordinates, and their equivalent shape-free
representation for comparison1.

Figure 4: Comparison between traditional face crop and shape-free representation. The latter is
essential for feature extraction in missing texture information scenario.

Once we have transformed all of our training data using this technique, we
use the shape-normalized renders to construct a texture-only subspace of the face.
Since the purpose of the subspace is to represent the texture feature space accu-
rately (rather than to learn discriminative characteristics), simple representations
such as singular value decomposition (SVD) [41], NMF [17], clustering or other
dictionary learning approaches such as K-SVD [42] built from several thousands
of face images transformed in the shape-free domain are suf�cient to capture the
principal texture variation. In this paper our framework allows for SVD-type dic-
tionaries for their sparse representation properties.

1 We noticed that commercial FR software behave erratically with this representation due to the edge intro-
duced by the blank background [40]. This will be the topic of investigation in a later publication. This observation
motivated our approach for obtaining a sparse face representation that can be used for matching.
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3.1.2. Super-Resolution Reformulated as a Missing Data Challenge
The core of our resolution-enhancing technique consists of modeling the rela-

tionship between high- and low-resolution face images, and then, from an unseen
low-resolution query face, infer the high-resolution equivalent face. From this per-
spective, super-resolution translates into missing data problem. To model the cor-
relation between different resolutions, we build a multi-resolution pyramid, similar
to [3], and model its subspace. This pyramid will enable us to avoid explicitly esti-
mating the resolution-reduction function or parameters of a point-spread-function.
We represent this high-dimensional multi-resolution subspace by a matrixD of
vectorized dictionary atoms and a mean vectorm trained on a Gaussian pyramid
[43] of training images as follows:

Given a training imageI i in the canonical shape-free representation, the Gaus-
sian pyramidG0(I i ); : : : ; Gk (I i ) for such an image is depicted in Figure 5. Follow-
ing [43], the bottom level of the pyramid is the image itself, and every subsequent
level is obtained byGi +1 (I ) = Reduce (Gi (I )) where theReduceoperator is
de�ned by the following equation:

Figure 5: Depiction of a Gaussian pyramid ofk + 1 levels forN + 1 face images in the shape-free
representation taken from the MPIE dataset.

Reduce(I ) [i; j ] =
5X

m=1

5X

n=1

w [m; n] I [2i + m; 2j + n] (1)

w in this case is a5 � 5 low-pass Gaussian �lter kernel. We build the training
subspace by concatenating the vectorized images of allk + 1 levels into a single
column. For testing, we assume we only have access to thekth level of the pyra-
mid of an unseen face image. The active dimensions in this current “missing-data”
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problem are the dimensions corresponding to the pixels of the input low-resolution
image. The missing dimensions are the dimensions corresponding to the pixels
of the images in the lower levels of the pyramid. In the case where a medium-
resolution image is available (as is common in most super-resolution algorithms
that rely on Gaussian pyramids), the smaller levels of the pyramid can be popu-
lated, and the active dimensions become the top of the pyramid, while the missing
dimensions are at the bottom of the pyramid.

Let x0 be the vector of observed pixels ofx, i.e., if 
 is a d0 � d binary row
selection matrix (d0 < d ), thenx0 = 
x . We need to solve for the signal repre-
sentation vector� , so in the case of an overdetermined system (d0 > N ), we can
minimize the following cost functionJ (� ):

J(� ) =

 x0� 
 (D � + m)


 2

2 (2)

Setting the gradientr J(� ) w.r.t. � to zero we obtain:

�̂ lse � (D T 
 T 
D ) � 1(D T 
 T )(x0� 
m ) (3)

As the number of missing dimension increases andd0 < N , the left pseudo-
inverse becomes infeasible. Alternatively, instead of minimizing the least squares
of the error vector, as in Equation 2, we can opt to minimize the following cost
function:

minimize J (� ) = k� k2 subject tox0 = 
 (D � + m) (4)

The Euclidean norm allows us to elegantly solve the equation using Lagrange mul-
tipliers. Solving for the optimality conditions yields the following answer:

�̂ mn � (D T 
 T )( 
DD T 
 T ) � 1(x0� 
m ) (5)

The vector�̂ mn represents theminimum-normin `2. We can assess the quality
of the obtained feature vectors by visually inspecting the quality of the reconstruc-
tion. Using the coef�cient vector we obtained, we can reconstruct the full pyramid
and extract whichever level of the pyramid we want followingx̂ mn = D �̂ mn + m.

An alternative formulation to Equation 5 is to consider the`1 norm instead of
the `2 norm. The standard̀1-minimization problem solves the following convex
program:

minimize J (� ) = k� k1 subject tox0 = 
 (D � + m) (6)

Equation 6, known asbasis pursuit(BP) [44], �nds the vector with smallest̀1
norm of vector� de�ned ask� k1 =

P d
i =1 j� i j. In `1-minimization literature, un-

derdetermined problems are usually the norm rather than the exception, andN
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can largely exceedd0. Moreover, Equation 6 is known to have a number of de-
sirable attributes, such as its ability to return a sparse solution, and its numerical
stability. As will become evident in the following sections, we will heavily rely
on these advantages to achieve robust sparse feature extraction for both analysis
and synthesis. As the results in [45] show, if a suf�ciently sparse� 0 exists such
that x0 = 
 (D � 0 + m), then Equation 6 will �nd it. In the presence of noise,
Equation 6 becomes:

minimize k� k1 subject to

 x0� 
 (D � + m)




2 � � (7)

for a given� and is known asbasis pursuit denoising(BPDN) [46] in the signal
processing community andLasso[47] in the statistical community. Let̂� `1 denote
the solution we obtain from either Equation 6 or 7, and the corresponding synthesis
vectorx̂ `1 = D �̂ `1 + m. Compared to many greedy pursuit algorithms commonly
used in`0-based dictionary learning approaches [48, 49], the`1-based method en-
joys signi�cant improvement in terms of learning ef�ciency. Compared to many
`2-based subspace learning methods, the`1-based method shows outstanding ro-
bustness towards noise and outliers.

3.2. Super-Resolution from a Signal Processing and Compressed Sensing Perspec-
tive

From a signal processing perspective, our aim is to reconstruct a signal from
a number of samples much smaller than the Shannon-Nyquist criterion for signal
recovery. Compressed sensing (CS) theory established how`1-minimization is
able to recover the signal from partial sampling, by exploiting one fundamental
assumption: that we have domain-speci�c knowledge of the signal being sampled.
In our case, we know that the signal represents a face, and that signal has a sparse
expansion in some basis.

To illustrate this fundamental concept, we brie�y demonstrate it on a toy ex-
ample. The concept is to sample signi�cantly less than the Nyquist criterion and
yet recover the signal. Letx be a signal synthesized by the addition of 4 complex
sinusoids2. Figure 6a depictsx while its frequency domain representation,� , is
shown in Figure 6b.

We know thatx = D � where� is the Fourier coef�cients andD is the Fourier
basis dictionary3.D in this case is an orthonormal basis and �nding� for a com-
pletely sampled signalx reduces to a simple projection operation, given by Equa-
tion 5. For thè 2 formulation to work, Nyquist dictates that we need to sample at

2 assumex is of lengthN =1000 and the generating frequencies are (10Hz, 20Hz, 35Hz, 45Hz) with respective
amplitudes of (0.3 0.9 0.5 0.4)

3 D p;q = 1p
N

e� 2�jpq=N
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(a) A given signalx (b) Fourier coef�cients�

Figure 6: The original signalx (a) and its frequency domain representation� (b). (a) also depicts
the location of 50 samples.

at least twice the highest frequency. However, in our super-resolution scenario, we
can only observe a fraction of the samples. Assume we observe only 50 out of the
1000 samples (depicted in Figure 6a by the red circles), the`2-minimum norm so-
lution fails to recover the original frequencies that originally generated the signalx.
Figures 7a and 7b depict the degenerate analysis and synthesis steps respectively.

(a) �̂ mn from 50 samples (b) x̂ mn

(c) �̂ ` 1 from 50 samples (d) x̂ ` 1

Figure 7: Analysis and synthesis results using`2 and`1 minimization respectively. The former fails
with so few samples while the latter completely recovers the original signal.

The main reason whỳ2-minimum norm failed is that
D is no longer orthog-
onal and there are many solutions that satisfy this equation. On the other hand, by
recognizing that� is sparse in the Fourier domainand forcing a sparse solution
via `1-minimization, we can accurately recover the frequencies and reconstruct the
signal using Equation 6 as shown in Figures 7c and 7d. This remarkable results of
completely reconstructing a signal with just 5% of the samples is at the core of our
super-resolution technique. We build a multi-resolution face model where signals
have an inherent sparse expansion and use`1-minimization to recover the entire
original signal.

14



Formally, assume that a vectorized imagex of sized needs to be recovered
from d0 measurements (such thatd0 � d). If we can also assumex has a sparse
linear expansion in a basis	 such thatx = 	c and thatc is S-sparse. As-
sume onlyd0 total measurements ofx are observed, where every measurement
i is obtained by the inner product of thei th row � i of a measurement matrix
� with the image, given byh� i ; x i . The coherence of the two bases, given by
� (	 ; � ) = d � maxi;k jh� i ;  k ij , where k is thekth column of 	 , was intro-
duced in [50] to represent how “distant” the two basis are from each other. It was
shown in [50] that ifd0 is greater than� (	 ; � ) � S � log(d), then`1-minimization
will recover the imagex with very high probability.

From this incoherence view of compressed sensing, we can justify why our
derivation can recover the full multi-resolution pyramid. In our formulation, the
sparse basis	 is the matrix of SVD dictionary atomsD . The imagex has a fun-
damentally sparse basis expansion inD as most of the energy is concentrated in
the �rst few dictionary atoms. The original measurement basis� is the standard
canonical basis. In the presence of missing pixels, the measurement basis is rep-
resented by our indicator matrix
 . The coherence between these two bases is
minimal, and CS theory indicates that despite a signi�cant proportion of missing
pixels, we can still reconstruct the original imagex using`1-minimization as we
have shown. One could learn a purpose-speci�c dictionary that might generate a
better reconstruction, but an SVD-type dictionary offers a sparse enough repre-
sentation that̀1-minimization can recover. As for the mechanics of the`1 solver,
there are several classes of algorithms that seek to solve Equation 7. The intrinsic
details of speci�c solvers is beyond the scope of this paper, however a solver based
on the augmented Lagrangian method (ALM) [51] has so far consistently outper-
formed other solvers for our super-resolution application, and will be used for the
remainder of this study.

3.3. Super-Resolution Induced by Sparse Representation

The high-quality reconstructions achieved by`1-minimization on the occluded
faces are signi�cant, because for super-resolution, the reconstruction task is even
more challenging. Comparatively, a bigger proportion of the pixels is missing, and
we need a method that is able to �t a signal representation vector from very few
observed pixels, and reconstruct the entire pyramid. In this section, we empirically
show how sparsity is essential in achieving this aim.

3.3.1. Robustness Analysis
The main advantage of the sparse feature extraction method over the`2 meth-

ods lies in its ability to �ndandmaintain a “good” solution, regardless of the size
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of the training data. To illustrate this concept, we build a multi-resolution sub-
space consisting of an increasing number of training subjects, all different from the
test subject. We then solve for the coef�cients using the`1 and`2 methods start-
ing from different levels of the pyramid, inducing different magni�cation factors.
Figure 8 compares the mean squared error (MSE) between the original and recon-
structed images as the number of training subjects increase. What we observe is
that`1 achieves and maintains a consistently lower MSE regardless of the number
of training subjects in the subspace.

(a)4x magni�cation (b) 8x magni�cation

(c) 16x magni�cation

Figure 8: Mean square error between the reconstructed high-resolution face belonging to an unseen
subject and the true high-resolution face produced by the`1 and`2 methods using an increasing num-
ber of subjects in the training subspace. (a), (b) and (c) show the MSE plots at different magni�cation
factors.
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