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Abstract—Object detection through LiDAR-based point cloud
has recently been important in autonomous driving. Although
achieving high accuracy on public benchmarks, the state-of-
the-art detectors may still go wrong and cause a heavy loss
due to the widespread corruptions in the real world like rain,
snow, sensor noise, efc. Nevertheless, there is a lack of a large-
scale dataset covering diverse scenes and realistic corruption
types with different severities to develop practical and robust
point cloud detectors, which is challenging due to the heavy
collection costs. To alleviate the challenge and start the first step
for robust point cloud detection, we propose the physical-aware
simulation methods to generate degraded point clouds under
different real-world common corruptions. Then, for the first
attempt, we construct a benchmark based on the physical-aware
common corruptions for point cloud detectors, which contains
a total of 1,122,150 examples covering 7,481 scenes, 25 common
corruption types, and 6 severities. With such a novel benchmark,
we conduct extensive empirical studies on 12 state-of-the-art
detectors that contain 6 different detection frameworks. Thus
we get several insight observations revealing the vulnerabilities
of the detectors and indicating the enhancement directions.
Moreover, we further study the effectiveness of existing robustness
enhancement methods based on data augmentation, data denoising,
test-time adaptation. The benchmark can potentially be a new
platform for evaluating point cloud detectors, opening a door
for developing novel robustness enhancement methods. We make
this benchmark publicly available on https://github.com/Castiel-
Lee/robustness_pc_detector.

Index Terms—Point cloud, Object Detection, Benchmark,
Robustness

I. INTRODUCTION

Bject detection via LiDAR-based point cloud [1], [2], as
O a crucial task in 3D computer vision, has been widely
used in applications like autonomous driving [3]. Recently,
the data-driven methods (i.e., deep neural networks) have
significantly improved the performance of 3D point cloud
detectors [4], [5], [2] on various public benchmarks, e.g., KITTI
[6], NuScenes [7], and Waymo [8]. However, the scenarios
covered by these public benchmarks are usually limited. For
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instance, there is a lack of natural fog effects in these datasets,
while fog could affect the reflection of laser beams and
corrupt point cloud data with false reflections by droplets [9],
[10]. Apart from the external scenarios, the internal noise of
sensors can also increase the deviation and variance of ranging
measurements [11] and result in corrupted data and detector
performance degradation. Given that LiDAR-based point cloud
detection is usually used in safety-critical applications (e.g.,
autonomous driving) and these external and internal corruptions
could potentially affect detectors’ robustness [12], [13], [11],
it is critical to comprehensively evaluate an object detector
under those corruptions before deploying it in real-world
environments.

There are some works constructing datasets while consider-
ing extreme weather like CADC [14], Boreas [15], SeeThrough-
Fog (STF) [10]. Nevertheless, the constructed datasets only
consider limited situations in the real world due to the heavy
collection costs, which are far from a comprehensive evaluation.
For instance, Boreas only covers 4 rainy scenes and 5 snowy
scenes. STF only contains foggy point clouds at severity levels
of “dense” and “light”. Hence, there is an increasing demand
for extending existing benchmarks to conduct a comprehensive
evaluation through covering diverse corruptions in the real
world. A straightforward way is to synthesize the corrupted
point clouds given the success of similar solutions in the image-
based tasks [16], [17] and 3D object recognition [11], [18].
However, there is no accessible dataset for the robustness
evaluation of point cloud detectors. Note that, the robustness
datasets (e.g., Modelnet40-C [11]) for 3D object recognition
cannot be used to evaluate the point cloud detectors, directly:
(1) the example in the recognition dataset only contains the
points of an object and cannot be adopted for object detection
task that aims to localize and classify objects in 3D scene.
(2) The latest Modelnet-C [18] and Modelnet40-C [11] only
consider 7 corruptions and 15 corruptions, respectively, which
is still limited for a comprehensive evaluation in safety-critical
environments such as autonomous driving.

The main challenge for building a dataset for the robustness
evaluation of point cloud detection stems from the huge amount
of diverse corruption types with different physical imaging
principles. For example, flawed sensors and different object
characteristics could lead to noise-like corruptions and affect
spherical and Cartesian coordinates of points, respectively.
Different weathers like rain and fog might lead to false
reflections. These corruptions have different imaging principles
and need careful designs of the respective simulation methods.
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TABLE I: Summary of datasets used for LiDAR-based point cloud object detection
Dataset Year Real/Simulated Frames BBoxes Classes Corruptions Corru[-)t.ion Robustr-less
Severities Metric
KITTI [6] 2012 real 15K 200K 8 cutout, noise 2 -
NuScenes [7] 2019 real 400K 1.4M 23 rain, sun, clouds, cutout, various vehicle types, noise 2 -
Waymo [8] 2019 real 200K 12M 4 rain, fog, cutout, dust, various vehicle types, noise 2 -
Boreas [15] 2022 real 7.1K 320K 4 snow, rain, sun, clouds, cutout, noise 2 -
STF [10] 2020 real 13.5K 100K 4 fog, rain, snow, cutout, noise 3 -
CADC [14] 2020 real 7K 334K 10 snow, bright light, cutout, noise 5 -
ONCE [19] 2021 real IM(15K labeled) 417K 5 rain, clouds, cutout, noise 2 -
occlusion, LiDAR, local_density_inc/dec, cutout,
ModelNet40-C [11] 2022  real+simulated 185K - 40 uniform, Gaussian, impulse, upsampling, background, 6 v
rotation, shear, FFD, RBF, inv_RBF
ModelNet-C [18] 2022  real+simulated 185K - 40 scale, rotate, jitter, drop_global/local, add_global/local 6 v
Argoverse [20] 2019 real 468K 993K 15 rain, cutout, dust, noise 2 -
Lyft Level 5 [21] 2020 real 30K 1.3M 9 rain, cutout, noise 2 -
Scene: rain, snow, fog, uniform_rad, gaussian_rad,
impulse_rad, upsample, background, cutout, beam_del,
Ours 2022  real+simulated 1.1IM 15M 8 local_dec/inc, layer_del; Object: uniform, gaussian, 6 v

impulse, upsample, cutout, local_dec/inc, shear, scale,
rotation, FFD, translation

In this work, for the first attempt, we construct a benchmark
to evaluate the robustness of point cloud object detectors based
on LiDAR under diverse common corruptions and discuss
the effectiveness of existing robustness enhancement methods.
Regarding the benchmark construction, we first collect existing
simulation methods for common corruptions and improve them
based on their affecting ranges and physical mechanisms of
formation Then, we borrow 7,481 raw 3D scenes (i.e., clean
point clouds) from [6] and build large-scale corrupted datasets
by adding 25 corruptions with 6 different severity levels to
each clean point cloud. Finally, we obtain a total of 1,122,150
examples covering 7,481 scenes, 25 common corruption types,
and 6 severity levels. Compared with real-world data benchmark
(see Table I), the proposed benchmark synthesized more
examples for benchmarking robustness. Compared with other
synthesized benchmark (see Table I), our benchmark provides
more types of corruption patterns to specifically support
benchmarking object detection. Note that, we conduct extensive
experiments to quantitatively validate the effectiveness of
simulation methods by evaluating the naturalness of synthesized
data.

With such a novel benchmark, we investigate the robustness
of current point cloud detectors by conducting extensive
empirical studies on 12 existing detectors, covering 3 different
representations and 2 different proposal architectures. In
particular, we study the following four research questions to
identify the challenges and potential opportunities for building
robust point cloud detectors:

« How do the common corruption patterns affect the point
cloud detector’s performance? Given overall common
corruptions, an accuracy drop of 10.94% (on average) on all
detectors anticipates a noticeable accuracy drop of detectors
against diverse corruption patterns.

« How does the design of a point cloud detector affect
its robustness against corruption patterns? Compared
with two-stage detectors, one-stage detectors perform more
robust against overall corruptions. Compared with point-
based detectors, voxel-involving detectors perform more

robust against a majority of corruptions.

« What kind of detection bugs exist in point cloud detectors
against common corruption patterns? Followed by the
decrease in the rate of true detection, common corruptions
widely trigger a number of false detections on all point cloud
detectors.

« How do the robustness enhancement techniques improve
point cloud detectors against common corruption pat-
terns? Even with the help of data augmentation, denoising,
and test-time adaptation, common corruptions still cause a
severe accuracy drop of over 10%.

In summary, this work makes the following contributions:

o We design the first robustness benchmark of point cloud
detection covering 25 common corruptions related to natural
weather, noise disturbance, density change, and object
transformations at the object and scene level.

« Based on the benchmark, we conduct extensive empirical
studies to evaluate the robustness of 12 existing detectors
to reveal the vulnerabilities of the detectors under common
corruptions.

« We study the existing methods of data augmentation, denois-
ing, and test-time adaptation and explore their performance
on robustness enhancement for point cloud detection and
further discuss their limitations.

II. RELATED WORK
A. LiDAR Perception

LiDAR perception is sensitive to both internal and external
factors that could result in different corruptions. Adversarial
weather [9] (e.g., snow, rain, and fog) can dim or even block
transmissions of lasers by dense liquid or solid droplets. Regard-
ing noise characteristics of point clouds, strong illumination
[23] affects the signal transmission by lowering Signal-to-Noise
Ratio (SNR), increasing the noise level of LiDAR ranging [24].
Besides, the intrinsically inaccurately ranging and the sensor
vibration [25], [26] potentially trigger noisy observations during
LiDAR scanning. Environmental floating particles (e.g., dust
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TABLE II: Taxonomy of collected common corruption patterns

Scene-level

Object-level

C ti C ti
orruption Corruption Potential Reasons orruption Corruption Potential Reasons
Category Category
rain uniform
Weather snow Environment: natural weather [9]; Noise gaussian Object surface: coarse surface [22]
Jfog impulse and dark-color cover [22];
j d It
M Environment: strong illumination [23]; Upsampe - -
gaussian_rad . cutout Object surface: object or self-
. 2—————=—— | Sensor: low ranging accuracy [24] and . _ .
Noise impulse_rad . . Density local_dec occlusions [13], dark-color cover [22]
— = | sensor vibration [25], [26]; —
upsample local_inc and transparent components;
background Environment: floating particles [27]; translation Object: different locations and
cutout rotation heading directions [28];
local_dec Sensor: different scanning layers, object Transformation shear Object deformation: bending or
Density local_inc occlusion [13], and randomly laser beam FFD moving pedestrians [29], different
beam_del [13] or layer (rotary laser) malfunction; scale styles of vehicles [30].
layer_del

[27]) could perturb point cloud with the background noise.
Density distribution of LiDAR-based point clouds can also
easily affect autonomous driving. For instance, common object-
object occlusions block LiDAR scanning on objects in the
scene [13]. Besides, the dark-color cover and rough surface
[22] could affect LIDAR’s reflection and thus reduce local point
density when sensing such objects. Moreover, the malfunction
of (fixed or rotary) lasers [13] globally loses points or layers
of points in point clouds. For 3D tasks, various shapes [29],
[30], locations and poses [28] of objects can also influence the
context perception in the scene.

Apart from these natural corruptions, LiDAR perception is
also sensitive to adversarial attack. Adversarial attacks [31] pose
significant security issues and vulnerability on 3D point cloud
tasks (e.g., classification [32], detection [33], and segmentation
[34]).

B. Point Cloud Detectors

Based on the different representations acquired from point
clouds, point cloud detectors can be categorized into 2D-view-
based detectors (e.g., VeloFCN [35] and PIXOR [36]), voxel-
based detectors (e.g., SECOND [37] and VoTr [38]), point-
based detectors (e.g., PointRCNN [39] and 3D-SSD [40]),
and point-voxel-based detectors (e.g., PVRCNN [41] and SA-
SSD [42]). On the other hand, based on the different proposal
architectures, point cloud detectors can also be divided into
one-stage detectors (e.g., 3D-SSD [40] and SA-SSD [42]) and
two-stage detectors (e.g., PointRCNN [39] and PVRCNN [41]).
In this paper, we select 12 representative methods covering all
these categories.

C. Robustness Benchmarks against Common Corruptions

Several attempts have been made to benchmark robustness
for different data domains. Based on ImageNet [43], ImageNet-
C simulates real-world corruptions to test image classifiers’
robustness. ObjectNet [17] illustrates the performance degrada-
tion of 2D recognition models considering object backgrounds,
rotations, and imaging viewpoints. Inspired by 2D works,
several benchmarks were built for 3D tasks. Modelnet40-C

[11] corrupts ModelNet40 [44] with 15 simulated common
corruptions affecting point clouds’ noise, density, and transfor-
mations, to evaluate the robustness of point cloud recognition.
Targeting 7 fundamental corruptions (i.e., “Jitter”, “Drop
Global/Local”, “Add Global/Local”, “Scale”, and “Rotate”),
ModelNet-C reveals the vulnerability of different components
of 9 existing point cloud classifiers. Regarding point cloud
detection, NuScenes [7], Waymo [8], and STF [10]collect
LiDAR scans under adversarial rainy, snowy, and foggy
conditions, where the accuracy of 3D detectors is tested.
However, to the best of our knowledge, a lack of benchmark
of point cloud detection’s robustness comprehensively against
various common corruptions is still remaining.

D. Robustness Enhancement for Point Cloud Detection

Recently, improving the robustness of point cloud detection
has also received significant concerns. Zhang et al. propose
PointCutMix [45] as a single way to generate new training
data by replacing the points in one sample with their optimal
assigned pairs in another sample. Lee et al. [46] propose a rigid
subset mix (RSMix) augmentation to get a virtual mixed sample
by replacing part of the sample with shape-preserved subsets
from another sample. Specifically for 3D object detection, there
are several ways to improve detectors’ robustness. Choi et al.
[47] propose a part-aware data augmentation that stochastically
augments the partitions of objects by 5 basic augmentation
methods. LiDAR-Aug [48] presents a rendering-based LiDAR
augmentation framework to improve the robustness of 3D
object detectors. LiDAR light scattering augmentation [12] and
LiDAR fog stimulation [49] utilize physics-based simulators
to generate data corrupted by fog/snow/rain and then augment
object detectors. Lehner et al. [S0] improve the generalization
of 3D object detectors to bad-shape objects by means of
adversarial vector fields. Self-supervised pre-training [51], [52]
can also endow the model with resistance to augmentation-
related transformations. Besides, denoising methods [53], [54],
[55] can remove the outliers in point clouds and thus potentially
improve detectors’ robustness. Also, test-time BN [56] adapt
the statistics of BN layers to models during testing for
generalization to diverse test-time domains. Regarding module
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design, there are also some detectors specialized for resisting
corruptions, e.g., BtcDet [13] with the occupancy estimator
for estimating occluded regions and Centerpoint [57] with key-
point detector for a flexible orientation regression. In this paper,
we evaluate data augmentation, denoising, test-time adaptation
methods for improving point cloud detectors against diverse
common corruption patterns.

III. BACKGROUND
A. Point Cloud Detection

Point clouds detectors aim to detect objects of interest
in point clouds in the format of bounding boxes (BBoxes).
Suppose a frame of point cloud data P is a set of point
p = [zP,yP, 2P, rP], where (zP,yP, zP) denotes its 3D location
and 7P denotes reflective intensity. Thus we can formulate the
point cloud detection as:

Det(P) = {b;}"

bi = [z, yi, zi, wi, hi, 1i, 0i, ci, 54

1

where Det(-) represents the detector; N is the number of
detected BBoxes in P; b; denotes i;;, detected BBox in P, where
1=1,2,--- | N; (x;,9i, 2) is the Cartesian coordinate of the
center of b;, (w;, h;,l;) is its dimensions, 0; is its heading
angle, c; is its classification label, and s; is its prediction
confidence score.
Point cloud feature representation. Representation for fea-
tures used in point cloud detection includes 2D-view images,
voxels, and raw points. By projecting point clouds into a 2D
bird’s eye view or front view, 2D-view-based 3D detectors can
intuitively fit into a 2D image detection pipeline [35], [36].
However, 2D-view images could lose depth information [2],
where the localization accuracy of the detector is affected.
To efficiently acquire 3D spatial knowledge in large-scale
point clouds, the “voxelization” operation is leveraged to
partition unordered points into spatially and evenly distributed
voxels [37], [58]. After pooling interior features, those voxels
are fed into a sparse 3D convolution backbone [37] for
feature abstraction. Given an appropriate voxelization scale,
voxel-based representation is computationally efficient, but the
quantization loss by voxelization is also inevitable [2]. Different
from the above methods, PointNet [59] and PointNet++ [60]
directly extract abstract features from raw points, which keeps
the integrity of spatial context in point clouds. However, the
point-based detectors are not cost-efficient for large-scale data
[2]. As a trade-off between the voxel-based and point-based
methods, Point-voxel-based representations [41], [42] possess
the potential of fusing the high-efficient voxels and accurate-
abstract points in feature abstraction.
Proposal architecture. One-stage detectors [37], [52] directly
generate candidate BBoxes from the abstracted features. To
improve candidate BBoxes’ precision, two-stage detectors [41],
[13] refine those BBoxes by region proposal network (RPN) and
tailor them into unified size by region of interest (Rol) pooling
before predicting output BBoxes. Compared with one-stage
detectors, two-stage ones [2] usually present more accurate
localization but intuitively, are more computationally time-
consuming.

B. Robustness Enhancement Solutions

Several attempts have been made to enhance the robustness
of point cloud detectors. In this paper, we explore data
augmentation, denoising, and test-time adaptation methods
and study their effects on improving point cloud detectors’
robustness against common corruptions. Data augmentation
[61] effectively increases the amount of relevant data by
slightly modifying existing data or newly creating synthetic
data from existing data. Data augmentation on the point cloud
[47], [62], [50] provides detectors with a way to be trained
with a larger dataset and thus potentially obtain more robust
detectors. Considering most detectors commonly adopt the
global/scene-level augmentations (e.g., {random_world_flip,
random_world_rotate, random_world_scale}), we compen-
satively choose the local/object-level part-aware data augmen-
tation [47] which mixes up 5 basic object-level augmentation
methods (i.e., {dutout, swap, mix, sparse, noise}) in the
partitions of an object. We also explore Cutout [63] and
CutMix [64] in the 3D point cloud detection, which have
been widely applied as 2D image augmentation methods
for robustness enhancement. As the data augmentation
by extreme samples generated through adversarial attacks
has drawn increasing attention, we selected the adversarial
shape-deformation augmentation 3D-VField [50] and study its
robustness enhancement on point cloud detection.

Different from data augmentation, denoising [53], [54] serves
as a pre-process during testing stage to detect and remove
spatial outliers in point clouds, which can reduce the effects
of noisy point cloud data. Considering not severely degrading
the efficiency of detector inference, we choose the common-
K-nearest-neighbors-based outlier removing (KNN-OR) [55] of
high efficiency (around 0.05s on each sample), which simply
removes the outlier points of over 3 times the standard deviation
of distance distribution within the cluster of 50 points. Besides,
test-time adaptation methods [56], [65] try to tackle data
distribution shifts between training and testing data by adapting
models to testing samples during testing time. Considering the
test-time adaptation is relatively unexplored in the 3D point
cloud detection, we adapt the test-time batch normalization
(TT-BN) [56] well-explored in the image domain to point cloud
detection, which utilizes testing data to update the statistics of
BN layers during testing time.

IV. PHYSICAL-AWARE ROBUSTNESS BENCHMARK FOR
PoOINT CLOUD DETECTION

We propose the first robustness benchmark of point cloud de-
tectors against common corruption patterns. We first introduce
different corruption patterns collected for this benchmark and
dataset in Section IV-A. Then we propose the evaluation metrics
used in our benchmark in Section IV-B. Finally, we introduce
the subject-object detection methods and robustness enhance-
ment methods selected for this benchmark in Section I'V-C.

A. Physical-aware Corrupted Dataset Construction

After the literature investigation in Section II-A, we summa-
rize 25 corruption patterns in Table II and categorize them into
4 categories based on presentations of common corruptions:
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(a) Real clean

(b) Simulated rain

(é) Real rain

Fig. 1: Comparison between real rain and simulated rain (red and yellow boxes contain the false points in the simulated and real rain, respectively; the data of
real clean and real rain from Boreas were sampled at the same location; the simulated rain data was augmented on the basis of the real clean data)

weather, noise, density, and transformation. On the other hand,
we also divide common corruption patterns into the scene-
level and the object-level. As an initial effort, the dataset
covers representative but not all corruptions, and we encourage
continuous work with more diverse corruptions considered in
the future.

The simulation of corruptions implemented in the paper
mainly operates on the spatial locations and the reflection
intensity of points in the point cloud. Those point-targeting
operations are equivalent to the perturbations of the real-
world corruptions on the LiDAR point cloud and have been
widely utilized in the simulation-related studies, as in noise-
related [25], [24], [18], [11], [47], density-related [18], [11],
[47], [66], [13], and transformation-related [18], [11], [30],
[28], [66]. Next, We briefly introduce each corruption pattern
in the following (refer to Supplementary C for detailed
implementations and visualizations).

Weather corruptions: LiDAR is sensitive to adversarial
weather conditions, such as rainy, snowy, and foggy [9]. Dense
droplets of liquid or solid water dim the reflection intensity
and reduce the signal-to-noise ratio (SNR) of received lights.
Floating droplets can also reflect and fool sensors with false
alarms. Both effects, in some cases, can significantly affect
the detectors. To simulate three weather corruptions: {rain,
snow, fog}, we adopt LiDAR light scattering augmentation
(LISA) [12] as a simulator for rain and snow and LiDAR fog
stimulation (LFS) [49] as a fog simulator.

Unlike other types of corruptions which are relatively simply
implemented and widely applied in LiDAR-based point cloud
studies, the mechanism of weather simulation on point clouds
complicatedly involved interaction between LiDAR lights and
dense droplets. Since there is a lack of the realness verification
study in [12], [49], we conduct experiments to further verify
the realness/naturalness of weather simulators for a convincing
benchmarking under weather-relevant corruptions. Specifically,
we train weather-oriented PointNet-based classifiers with
datasets collected in real snowy and foggy weather. Then, we
leverage the classification accuracy of those trained classifiers
testing on simulated data to measure the similarity of simulated
data to real data. As shown in Table S12 in Supplementary B,
the testing accuracy 97.13% and 92.60% of trained weather
classifiers on simulated snow data and fog data show that the
simulated snow data and fog data are highly similar to the
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Fig. 3: Feature visualization of the fog classification by T-SNE

real data. Further, the overlapping feature distribution of real
and simulated corrupted data (refer to Figures 2 and 3) and
the maximum mean discrepancy (MMD) [67] results (refer to
Table S13) reveals that the simulated snow/fog is close to the
real snow/fog, respectively, while not close to the clean data.
Please refer to Supplementary B for more details.

Regarding rain corruption, we find the effects of rain droplets
on point clouds are too subtle to be caught by classifiers, as
shown in Figure 1. Alternatively, we visualize simulated and
real point clouds and qualitatively verify the high similarity
between simulated and real point clouds (see more comparisons
in Supplementary B).
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Noise corruptions: Noise commonly exists in point cloud
signals [55], [53]. Scene-level factors (e.g., strong illumination
[23], limited ranging accuracy of sensors, and sensor vibration
[25], [26]) could increase the variance of ranging or extend
the positioning bias. Floating particles, e.g., dust [27], could
cause the background noise in point clouds. Hence, we collect
5 scene-level noise corruptions: {uniform_rad, gaussian_rad,
impulse_rad} add uniform, Gaussian, impulse noise on the
spherical coordinates of points; {upsample} randomly upsam-
ples points nearby original points; {background} uniformly
randomly samples points within the spatial range of point
clouds. Besides scene-level effects, object-related factors could
cause noise in LiDAR points, e.g., dark color [22] and coarse
surface. Thus, we formulate 4 object-level corruptions: {uni-
form, gaussian, impulse} add uniform, Gaussian, impulse noise
on the Cartesian coordinates of points of objects; {upsample}
upsamples points nearby original points of objects.

Density corruptions: The density-related corruptions refer
to the corruption patterns that change the global or local
density distribution of LiDAR point clouds. For instance, the
global static density of points in LiDAR varies due to different
amounts of scanning layer (e.g., 32 or 64). Besides, inter-object
occlusion and random signal loss [13] could remove points
randomly. We hence propose 5 corruptions: {cufout} cuts out
the sets of locally gathering points; {local_dec, local_inc}
locally decrease or increase the density of points; {beam_del,
layer_del} randomly delete points or layers of points in point
clouds. In terms of object-level factors, dark-color cover [22]
and transparent materials (e.g., glasses and plastics) of objects
can affect the point density of objects. Hence, at the object
level, we also propose a set of corruptions: {cutout, local_dec,
local_inc}, affecting the point density of objects.

Transformation corruptions: In the scenario of autonomous
driving, shapes of objects within one class could be various
(e.g., flat sports cars and round vintage cars [30], bending and
walking pedestrians [29]). Those long-tail data could potentially
be recognized wrong. Besides, dynamic changes in heading
directions and locations of objects [28] could potentially affect
the positioning accuracy of detectors. Hence, we formulate
5 corruptions: {translation, rotation} change locations and
heading directions of objects to a milder degree, i.e., < 1m
and < 10°; {shear} [68] and {scale}, as linear deformations,
slant and scale points of objects; {FFD} adopts free-form
deformation (FFD) [69] to distort the point shape of an object
in a nonlinear manner.

Dataset selection. As one of the most popular benchmarks in
autonomous driving, KITTI [6] contains 7481 training samples
covering 8 object classes. Unlike other large-scale datasets
including weather and other corruptions in Table I, the data in
KITTI are mostly collected under clean conditions and also
have a relatively simple annotation format, which makes it
a good option for conducting comparative experiments. We
also encourage the future extension to other real or synthesized
datasets. To simulate various levels of severity in the real world,
we set 6 severity levels for each corruption (considering “clean”
as level 0).

B. Evaluation Metrics

To quantify the robustness performance of detectors, we
design the following evaluation metrics from two perspectives:
1) detection accuracy and 2) number of bugs triggered.
Overall accuracy. For each test, we use the overall accuracy
(OA), by taking the average of APs (average precision) at three
difficulty levels (i.e., “Easy”, “Moderate”, and “Hard”). And
we follow the common settings of IoU thresholds {Car: 0.7,
Pedestrian: 0.5, Cyclist: 0.5} to search for the true positive
detections in AP and recall calculation.

For every corruption, we calculate corruption error (CE) to
measure performance degradation according to OA by:

CEZs = OAgjean — OAZ 2)

where OAY", is the overall accuracy of detector m under
corruption c of severity level s (exclude “clean”, i.e., severity
level 0) and clean represent the clean data. For detection m,

we can calculate the mean CE (mCE) over C' corruptions by:

m __ Zgzl ZS:l CEgjb

mCE™ = ===c

Detection bug. There are various bugs existing in the pipeline

of point cloud detection, such as annotation errors, run-time

errors, detection bugs. In this paper, we focus on the bugs in

detection results. Specifically, we're interested in false detection,
false classification, and missed detection:

3

o False detection (FD) on detection BBoxes: maximum IoU >
0 with correct classification w.r.t. ground-truth BBoxes;

o False classification (FC) on detection BBoxes: maximum
IoU > 0 with false classification w.r.t. ground-truth BBoxes;

e Missed detection (MD) on detection BBoxes: maximum IoU
= 0 w.r.t. ground-truth BBoxes.

Correspondingly, the bug rates (BRs) are calculated by:

N.
N Ndet (4)
where * stands for FD, FC, and MD; N, is the number of
objects of *; Ny is the number of detected objects.

To measure the increase of BR after being affected by
common corruptions, we calculate corruption risk (CR) and
the mean CR (mCR) for detector m by

BR.

CR‘::C,S = BR’:C,S - BRir:clean (5)
w _ 20e1 Yooy CREC,
CR) = ==== = 6
m 5C (6)
where BRY", ; is the BR, of detector m under corruption ¢

of severity level s and C for the number of corruptions.

C. Benchmark Subjects

Point cloud detectors. For benchmarking point cloud detec-
tion, we select 12 representative detectors: SECOND [37],
PointRCNN [39], PartA2 [70] PVRCNN [41], PVRCNN++
[71], BtcDet [13], VoTr-SSD, VoTr-TSD [38], Centerpoint [57],
Centerpoint_RCNN [57], Centerformer [72], and SE-SSD [73],
to cover different kinds of feature representations and proposal
architectures. We show the detailed taxonomy in Table III. For a
more fair comparison, based on the robust Centerpoint detector
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TABLE III: Subject point cloud detectors.

Representations Proposal Architectures
Detectors - -
point voxel point-voxel | one-stage  two-stage
SECOND [37] v v
PointRCNN [39] v v
PartA2 [70] v v
PVRCNN [41] v v
PVRCNN++ [71] v v
BtcDet [13] v v
VoTr-SSD [38] v v
VoTr-TSD [38] v v
SE-SSD [73] v v
Centerpoint [57] v v
Centerpoint_RCNN [57] v v
Centerformer [72] v v

and its two-stage version Centerpoint_RCNN, we construct
5 versions of Centerpoint detectors for ablative comparison,
as in Table VI, covering 3 types of feature representations
and 2 types of proposal architectures. Note that, as in [41],
[71], the point-voxel-based feature extraction needs the two-
stage proposal structure, where the multi-scale voxel-based
features are extracted in the first-stage detection, and the point-
voxel-based features combining raw points and multi-scale
voxel-based features (from the first stage) are extracted for the
second-stage refinement.

Data augmentation, denoising, and test-time adaptation
methods. In this paper, we study the effectiveness of data
augmentation, denoising, and test-time adaptation methods
for improving detectors’ robustness against corruption. As dis-
cussed in Sec. III-B, for data augmentation, we choose methods
of part-aware data augmentation (PA-DA) [47], Cutout [63],
CutMix [64], and 3D-VField [50]. For denoising, we adopt
K-nearest-neighbors-based outlier removing (KNN-OR) [55]
to remove the outliers out with 3 times the standard deviation
of distance distribution within the cluster of 50 points. For test-
time adaptation, we select the test-time batch normalization (TT-
BN) [56] to update statistics of BN layers during testing time.
Apart from them, we also augment train data with different
corruption categories { Weather, Noise, Density, Transformation}
by means of our physical-aware simulation tools to explore the
robustness enhancement of the category-oriented augmentation.

V. EXPERIMENTS AND ANALYSIS
A. Experimental Set-ups

For a fair comparison, each detector in Table III is trained
with the clean training set of KITTI, following the training
strategy in each paper, and evaluated with corrupted validation
sets of KITTI. All detectors go through the training of 80
epochs among which the best checkpoint is selected by metrics
of mAP. All detectors are executed based on the open-source
codes released on GitHub [74], [75], where the configuration
files and pre-trained checkpoints can be found. The experiments
are executed on the NVIDIA RTX A6000 GPU with a memory
of 48GB. The batch size of each detector is optimized to
reach the limit of GPU memory. In robustness enhancement
experiments, we first follow the recommended setting
“dropout_p02_swap_p02_mix_p02_sparse40_p01_noise10_p01”

in [47] to adopt PA-DA to augment the clean train set. For
CutMix, we follow the settings (i.e., “swap_p10”) in [47] to
implement the augmentation. For Cutout, we utilize the cutout
in our corruption simulation toolkit with the randomly selected
severity level for each sample. For 3D-VField augmentation,
we follow the settings in [50]. The “augmented + clean” set
(2x3712 samples) is used for all augmentation methods. For
a fair comparison, the category-oriented data augmentation
also builds “augmented + clean” set from the clean train set.
For each basic corruption category {Weather, Noise, Density,
Transformation} or overall corruptions, we augment every
sample of KITTI train set with a randomly selected corruption
at a randomly selected severity level. By means of the
GPU-accelerated tool remove_statistical_outlier of the package
“open3d”, KNN-RO is implemented to denoise the val data
during the detection inference. By modifying the parameters
“running_mean” and “running_val” of PyTorch-based BN
layers during testing, we implement the TT-BN to update the
statistics of BN based on testing data.

Note that, since only detection of "Car" is available for all
detectors, as shown in Table IV, the following evaluation will
mainly focus on detected results in the "Car" category. We
encourage readers to refer to Supplementary A for complete
evaluation results, e.g., about "Pedestrian".

B. Effects of Common Corruptions to Point Cloud Detectors

How do different corruptions affect detectors’ overall
accuracy? As shown in the yellow cell in Table V, the average
mCEap of 10.94% anticipates a noticeable accuracy drop of
detectors against diverse corruption patterns. It suggests an
urgent need of addressing the point cloud detector’s robustness
issue. Specifically, {rain, snow} and {shear, FFD} corruptions
have the AP loss of more than 20% (last column in Table V),
which presents a serious degradation of detection accuracy.
By contrast, scene-level and object-level upsample, scene-
level beam_del, and object-level rotation show less effects
on detectors (CEap less than 1%). It demonstrates that
upsampling noise, sparse beam loss, and slight rotation affect
detectors’ accuracy slightly.

Besides, as shown in Table S3 in Supplementary A, the
recall metric performs similarly to AP, as the serious recall
loss of over 22% on {rain, snow, shear}. In addition, object-
level {cutout, local_dec, FFD} present an unignorable drop of
recall within [18%, 22%].

How do corruption severity levels affect detectors’ overall
accuracy? We find almost all common corruptions have a
predictable trend, i.e., each corruption’s C'E4 p increases as its
severity level increases (see Table S1 in the Supplementary A).
The only exception is rain, CEsp of which remain around
26% regardless of the severity level. There is the plausible
explanation: (1) by statistics, we find, due to the unpromising
laser reflections of car surfaces, 58.94% of points of “Car” in
KITTI have zero-value reflection intensity, and those points are
easily filtered out by the rain droplets, causing a noticeable AP
drop, and (2) noise points reflected by rain droplets at different
severities are sparse (see Figure 1 in the Supplementary B) so
that the slight effect of noise points on detection is covered by
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TABLE IV: AP(%) of all detectors under clean observations (at the severity level of 0)

PVRCNN PointRCNN PartA2 SECOND BtcDet VoTr-SSD VoTr-TSD SESSD Centerpoint PVRCNN++ Cel';t(e::’N"‘"t Centerformer
Car 86.77 8282 8536 8367 8732 8104 8639 8644 8214 85.13 86.07 79.80
Pedestrian  60.61 5234 5968 5215 ; ; ; ; 4932 5832 55.93 5278
Cyclist 7642 7760 80.09 6851 ; ; ; ; 68.58 71.85 75.43 67.19

TABLE V: CE 4 p(%) of different detectors under different corruptions on Car detection (the green cell stands for the lowest CE 4 p among detectors

given a certain corruption and the yellow cell for the average mC'E 4 p)

. Point-voxel Point Voxel
Corruption - Average
PVRCNN PVRCNN++ Ce]:tg;p;'m PartA2 PointRCNN |SECOND BtcDet VoTr-SSD VoTr-TSD SE-SSD Centerpoint Centerformer
rain 25.11 26.05 2515|2331 2444 21.81 3107 2817 2677 2951  25.83 2665 | 26.16
Weather snow 4423 46.24 4167 3774 43.10 3484 5407 5410 5218 4919 3874 4162 | 44.81
fog 1.59 237 158 | 352 164 160 181 177 202 159 111 2.07 1.89
uniform_rad | 10.19 6.69 826 | 832 1045 951 9.3 379 411 934 8.15 5.98 7.83
= gaussian_rad| 13.02 8.74 1098 | 998 1249 1213 1083 484 518 1102 1017 6.66 9.67
3 Noise impulse_rad | 2.20 2.00 208 |38 136 223 250 225 3.57 118 186 1.20 2.19
g background | 2.93 2.16 315 | 649 116 241 182 459 368 214 1.98 0.77 277
3 upsample | 081 0.96 060 | 1.84 072 031 095 037 071 055 0.46 0.71 0.75
cutout 375 3.77 358 | 397 3.6 427 399 451 359 426 4l 425 3.98
local_dec | 14.04 14.24 14.09 - 14.34 13.88 1455 1444 1250 1704 1464 15.91 14.52
Density local_inc | 140 1.72 153 | 334 134 133 220 166 169 090 0.95 081 1.57
beam_del | 0.58 091 045 | 079 080 073 088 080 053 107 0.47 0.82 0.74
layer_del | 2.94 3.05 287 | 346 280 310 339 3.29 316 337 2.67 3.50 3.13
uniform | 15.44 12.54 1363 | 1295  11.66 948 1260 276 481 699 6.51 523 9.55
Noise gaussian | 20.48 17.88 1902 | 1762 1558 1298 1705 472 746 956 9.49 7.54 13.28
impulse 330 4.06 316 | 470 280 253 407 288 429 220 2.11 1.97 3.17
upsample | 1.12 1.19 072 | 195 094 067 133 008 040 022 0.16 0.16 0.75
E cutout 15.81 14.94 1546 | 1562 1535 1499 1562 1507 1609 1651  14.06 1391 | 15.28
=|  Density local_dec | 1438 13.49 1376 | 14.16  13.85 1323 1426 1266 1441 1508 1252 1251 13.69
% local_inc | 13.93 13.79 1332 | 1419 14.09 1374 1356 1134 1305 1103 1164 10.19 | 12.82
S shear 3727 39.42 3873 4096 3996 | 4035 4137 3952  37.85 4035  40.00 3538 | 39.26
FFD 3242 3538 3336|3888 3673 3315 3677 3304 3426 3796  32.86 33.52 | 34.87
Transformation| rotation 0.60 0.10 048 | 047 057 031 097 039 075 027 038 0.56 0.49
scale 5.78 5.64 531 | 813 498 696 581 853 650 653 7.50 8.57 6.69
translation | 3.82 334 413|303 3.02 324 458 488 5.34 137 391 2.93 3.63
mCEap 11.49 11.23 1108 |11.64 1L11 1039 1221 1042 1060 1117  10.09 9.74 10.94
the randomness of severe influence of removing points with ®BtcDet
zero-value reflection, which makes the AP drop seemingly 12.0
unaffected by the rain severity. Interestingly, as for “Pedestrian”,
only 10.01% of points have zero-value reflection intensity, s *FpinfRCNN |
causing a slight influence on detection. Hence, the effect of
. . . OPVRCNN++ o
noise points by rain appears and shows a normal trend as the o *PartAZ8Centorpoint RCNN
severity level increases (see Table S15 in the Supplementary). g
®VoTr-TSD
10.5 —
C. Reacts of Detector Designing to Common Corruptions oS50 ASELOND
How do different representations affect detectors? As shown 100 ACenterpoint
in Figure 4, voxel-based Centerformer and BtcDet record the hCenterformer
lowest and highest CE 4p. For most detectors (i.e., except 50 s © & o o % & a8

for PointRCNN), mCFE4p approximately increases as AP
increases, indicating an potential trade-off between accuracy
and robustness against common corruptions.

We also find that, as shown in Table V, for most Weather,
Noise, and Density-related corruptions, voxel-based methods
are generally more robust against corruption patterns. For a
more fair comparison between different input representations,
we conduct the ablative experiments on the robust Centerpoint.
As shown in Table VI, under any given proposal structure,
the voxel-based Centerpoint detectors perform more robustly
against most Weather, Noise, and Density corruptions and

AP/%

Fig. 4: mCE 4 p of detectors with different representations on Car detection
({red, , blue} for {voxel-based, point-based, voxel-point-based} detectors
and {circle, triangle} for {two-stage, one-stage} ones)

overall corruptions by presenting a lower CE4p or mCE4p
w.r.t. other detectors. One plausible explanation is that the
spatial quantization of a group of neighbor points by voxeliza-
tion mitigates the local randomness and the absence of points
caused by noise and density-related corruptions.
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TABLE VI: Ablation study on Centerpoint detectors with different data
representations and proposal structures

. one-stage two-stage

Corruption > - -
voxel point | point-voxel voxel point
rain 25.83 3548 25.15  23.61 31.37
Weather snow 38.74 46.68| 41.67  37.31 49.51
fog 1.11 3.53 1.58 1.36 3.54

uniform_rad | 8.15 8.18 8.26 7.85 7.53

gaussian_rad | 10.17 9.94 10.98 10.24 9.46

Noise impulse_rad | 1.86 2.38 2.08 1.95 291
Scene-level background | 1.98 4.92 3.15 3.17 4.63
upsample | 0.46 2.00 0.60 092 227

cutout 411 4385 3.58 370 4.54
local_dec |14.64 15.08 14.09 14.18 19.94

Density local_inc | 095 2.79 1.53 1.63 298
beam_del | 0.47 0.92 0.45 0.78 1.35

layer_del | 2.67 4.06 2.87 327 4.09

uniform 6.51 7.20 13.63 11.25 8.55
. gaussian 9.49 10.72 19.02 16.10 12.31

Noise 8

impulse 2.11 4.00 3.16 2.85 4.01

upsample | 0.16 1.25 0.72 1.04 1.78
cutout 14.06 16.01 15.46 15.58 16.51
Object-level Density local_dec |12.52 14.17 13.76 14.02 15.01
local_inc | 11.64 14.02 13.32 12.64 14.13
shear 40.00 43.27 3873 38.15 41.10
FFD 32.86 34.55 3336 33.55 35.66

Transformation rotation 0.38 0.80 0.48 0.84 152
scaling 7.50 9.17 5.31 550 6.89

translation | 3.91 7.12 4.13 420 5.84
mCEap 10.09 12.12 11.08 10.63 12.30

Specifically, for severe corruptions (e.g., shear, FFD in
the Transformation), the point-voxel-based methods are more
robust. The point-based PointRCNN and PartA2 don’t have
performance superiority against most corruptions (except
{scale}), suggesting potential limitations.

How do different proposal architectures affect detectors?
As shown in Figure 4, two-stage detectors perform less robustly
against overall corruptions compared to one-stage detectors,
showing a higher mC' E 4 p. Also, as shown in Table VI, under
a given representation, the one-stage detectors perform more

robustly under overall corruptions, presenting a lower mCE 4 p.

One possible cause is that corrupted data could affect the
proposal generation of stage 1 (for two-stage detectors and
one-stage ones), and the low-quality proposals significantly
affect the BBox regression of stage 2 (only for two-stage
detectors).

Specially, as shown in Table S2 in the Supplementary A,
one-stage detectors perform more robust against corruptions of
scene-level and object-level Noise, object-level Density, and
Transformation, while two-stage detectors are mainly more
robust against scene-level Density. As for Weather corruptions,
one-stage detectors present better robustness on {snow, fog}
and two-stage detectors work better under corruptions of rain.

D. Detection Bugs in Detectors under Common Corruptions

How do different corrupted inputs trigger bugs in detectors?
We find that the rate of false classification (FC) against common
corruption patterns is relatively small, where the average C Rp¢
is only 0.26% (refer to Table S4 in Supplementary A). By
contrast, the increase of false detection (FD) rate is relatively
obvious, by the average CRpp of 3.19% (refer to Table S5

in Supplementary A). Regarding missed detection (MD) (refer
to Table S6 in Supplementary A), scene-level {background}
and object-level {cutout, local_dec} result in an increase of
MD rate of more than 4%.

Surprisingly, according to Table S8 in the Supplementary A,

{rain, snow} and scene-level {uniform_rad, gaussian_rad} even
reduce the rate of missing objects. One plausible explanation
for this observation is that milder noise points offer a better
knowledge of the shape of some objects to detectors, but
positioning on those objects is not accurate since the rate of
false detection increases (more details in Table S5 and S6 in
Supplementary A). Also, we find that, as shown in Figure S1
in Supplementary A, compared to clean observations, TD rates
under corrupted observations are always lower at any distance
of objects to LiDAR.
How do corrupted inputs trigger bugs in different detectors?
In general, as shown in Table S7 in Supplementary A,
most of the detectors perform relatively stable in terms of
false classification rates and missed detection rates against
corruptions. In contrast, affected by corruptions, all detectors
have increasing false detection rates (see Table S7), revealing
a serious bias in BBox localization.

E. Robustness Enhancement Evaluation

How do PA-DA and KNN-based outlier-removing affect
detectors’ robustness against different corruptions? Shown
by Table S10 in Supplementary A, the average CE4p with
PA-DA slightly decreased to 10.75% compared to the average
CEFE 4p without PA-DA, which still poses serious robustness
issues for point cloud detectors. As shown in Tables VII
and S10, PA-DA shows a better but still limited robustness
improvement in the object-level Noise and Density. The
existence of improvement is reasonable since PA-DA involves
exactly object-level noise and density-related simulation during
augmentation. However, since PA-DA only involves 5 limited
basic augmentations at only one severity level, its robustness
improvements on detectors, even under object-level noise
and density corruptions, are limited. Regarding denoising
strategy, the average C'E 4 p after adopting KNN-RO increases
to 13.45% without PA-DA and 13.22% with PA-DA (refer to
Table S10). These results indicate that KNN-RO might not be
capable of enhancing point cloud detectors’ robustness in Car
detection. However, we find that KNN-RO slightly improves the
robustness of Pedestrian detection by decreasing the CE 4p by
0.37% without PA-DA and 0.89% with PA-DA (Table S11 in
Supplementary A). The robustness improvement on Pedestrian
is reasonable due to KNN-RO’s removing spatial outliers on
the background and objects. But what causes the performance
drop on Car detection? By investigating KITTI, we found,
15.32% of Car BBoxes have scanning points of less than
20, higher than 7.14% of Pedestrian BBoxes. Such relatively
few points within a Car BBox (larger than Pedestrian) are
distributed more sparsely and thus easier removed by KNN-RO,
causing a missing of some parts of the car or even the whole
car (refer to Figure S6 in the Supplementary). It significantly
facilitates KNN-RO’s damage on the point imaging of cars
and further the detection accuracy on Car detection. Actually,
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TABLE VII: CE 4 p (%) of different enhancement methods on Car detection
of {Centerpoint, PVRCNN, PointRCNN, SECOND} under different corruption
categories (the green stands for the lowest CE 4 p given a category, Original
for no enhancement method, and {WeatherAug, NoiseAug, DensityAug,
TransAug, AllCorAug} for augmentation by 4 and overall categories)

Enhancement Scene-level Object-level

Overall
Method Weather Noise Density | Noise Density Tranffor-

mation

NonAug 21.62 5.44 4.23 7.59 14.02 17.00 10.93
PA-DA [47] 23.44 5.99 491 741 13.73 17.34 11.40
KNN-RO [55] 25.22 7.27 6.74 9.87 1594 19.17 13.25
PA-DA&RO 27.01 7.84 7.43 9.75 1575 19.56 13.76
Cutout [63] 21.05 5.36 3.69 8.45 12.60 16.68 10.60
CutMix [64] 21.89 5.55 4.32 9.00 13.58 17.38 11.21
3D-VFAug [50] | 28.62 3.40 4.94 291 14.11 16.95 10.71
TT-BN [56] 25.54 7.26 7.28 9.65 1622 19.77 13.42
WeatherAug 11.13  6.87 4.05 11.02 1391 17.22 10.47
NoiseAug 24.34 233  4.02 2.00 1351 16.47 9.50
DensityAug 20.52 4.52 3.19 5.07 10.85 15.62 9.33
TransAug 24.51 6.00 4.53 8.11 13.62 10.31 10.11
AllCorAug 15.41 2.65 3.78 223 11.89 13.63 7.69

after investigation, 72.14% of objects affected by KNN-RO are
cars while only 0.94% of them are pedestrians, which verifies
much more serious effects of KNN-RO on cars.

How do PA-DA and KNN-based outlier-removing affect
different detectors’ robustness against corruption? Except
for PVRCNN, SE-SSD, Centerpoint, and Centerformer, other
detectors perform more robustly against corruption patterns
after adopting PA-DA (refer to Figure S2 in Supplementary
A). Moreover, PointRCNN and VoTr-SSD increase their AP
by 1.16% and 2.46% after adopting PA-DA, respectively.
According to Figure S2, KNN-RO degrade AP metric for all
detectors, presenting no improvement on the robustness of any
detector on Car detection. However, adopting KNN-RO slightly
improves the AP by 0.37% without PA-DA and 0.89% with
PA-DA on Pedestrian detection, respectively (refer to Table S9
in Supplementary A). It illustrates again that compared with
on Car, KNN-RO is more effective in removing perturbations
caused by corruptions on Pedestrian.

How does the category-oriented data augmentation against
different corruption categories? As shown in Table VII, as
augmentation methods relevant to the object-level Density,
Cutout and CutMix present the limited AP increases of 1.42%
and 0.44% on the object-level Density, respectively. It is mainly
because Cutout involves one limited corruption and CutMix
only augments data at the fixed severity level. Surprisingly,
compared with the AP increase of 0.05% on Transformation,
shape-deformation-related 3D-VField presents a significant
AP increase of 4.68% on object-level Noise, revealing a
high relevance of its adversarial deformation to Noise-related
corruptions (refer to Figure S7 in Supplementary). Compared
with original detectors, detectors with TT-BN perform worse
under all corruption categories. One plausible explanation is,
due to the large-scale input samples under the autonomous
driving scenarios, the relatively small batch size (less than 64
samples per batch) causes unstable statistics (i.e., the mean
and standard deviation) for BN layers and thus cause unstable
and biased detection.

As shown in Table VII, we found that the augmentation by

all corruptions reaches the lowest CE4 p of 7.69% (i.e., an
AP increase of 3.24% than Original) under overall corruptions.
For each corruption category, the detectors augmented by the
corresponding basic corruption category show a significant
improvement (i.e., an obvious C' E 4 p drop) compared with the
other robustness enhancement methods. By a simple ensemble
of the best results under each category, the category-oriented
data augmentation significantly decreases the overall CE4p
to 6.16%, revealing the great potential for corruption-oriented
augmentations on robustness enhancement.

VI. DISCUSSIONS

According to detailed findings in the empirical study of
Section V, we summarize the following insights as guidelines
for future robustness enhancement studies:

Insight 1. Common corruptions related to natural weather
and shape transformation significantly challenge the point cloud
detectors.

Insight 2. Regarding the input feature representation of de-
tectors, the voxel-based detectors perform more robustly against
common corruptions than point-based detectors, especially for
most Weather, Noise, and Density corruptions.

Insight 3. Regarding the proposal structures of detectors,
one-stage detectors comprehensively perform more robustly
against overall corruptions than two-stage ones.

Insight 4. As for the detection results, corruptions more
commonly cause a severe bias in BBox localization rather than
erroneous object classification.

Insight 5. For the existing robustness enhancement methods,
the explored augmentation methods only work on limited
corruption categories; KNN-RO causes precision damage on
Car detection; TT-BN easily degrades detection accuracy due
to the limitation of batch size. To contrast, corruption-category-
oriented augmentation shows great potential in robustness
enhancement.

VII. CONCLUSION

In this paper, we propose the first physical-aware robustness
benchmark of point cloud detection against common corruption
patterns, which contains a total of 1,122,150 examples covering
25 common corruption types and 6 severity levels. Based on
the benchmark, we conduct extensive empirical studies on 12
detectors covering 6 different detection frameworks and reveal
the vulnerabilities of the detectors. Moreover, we further study
the effectiveness of existing robustness enhancement methods
of data augmentation, denoising, and test-time adaptation and
find them limited, calling for more research on robustness
enhancement. We hope this benchmark and empirical study
results can guide future research toward building more robust
and reliable point cloud detectors.

In the future, we plan to extend the corruption simulation on
more large-scale datasets (e.g., NuScenes [7], Waymo [8], and
ONCE [19]) for a more extensive and comprehensive bench-
mark on robust point cloud detection. However, large-scale
datasets with a wider range of locations and times of collection
contain more LiDAR observations under corrupted conditions
(e.g., rain, snow, rare cars, and other corruptions) as shown
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in Table I. Thus, one challenge of extending into large-scale
datasets is to erase the effects of original corruptions to make
data more controllable to simulate corruptions individually.
Also, we plan to extend our work into a robustness benchmark
involving multi-modal point cloud detection (including e.g.,
images or videos). One of the main challenges is to design
the physical-aware corruption models consistent in both point
clouds and images for the high-fidelity simulation of diverse
common corruptions.
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APPENDIX A
EMPIRICAL STUDY

Due to the page limit of supplementary materi-
als, we present some tables and figures (about Pedes-
trian) on the Supplementary website https:/sites.google
.com/ualberta.ca/robustness | pc2detector/. We encourage read-
ers to refer to this Supplementary website for additional
details.

A. Effects of Common Corruptions to Point Cloud Detectors

TABLE S1: CE 4 p (%) under different severity levels of different common
corruptions on Car detection ( yellow cells for the CE 4 p under rain)

Corruption 1 2 3 4 5 Average
rain 26.76 2640 2533 2522 27.07| 26.16
Weather snow 26.62 30.38 44.89 56.14 66.01 | 44.81
fog 0.16 0.60 124 259 484 1.89
uniform_rad | 046 231 626 11.83 1827 | 7.83
= gaussian_rad | 149 425 8.84 13.90 19.87 9.67
E Noise impulse_rad | 0.96  1.31 1.74 247 446 2.19
é background | 1.80 2.06 250 278 4.72 2.77
% upsample 033 034 053 076 1.78 0.75
cutout 1.65 237 372 498 7.16 3.98
local_dec 524 675 943 1508 36.08 | 14.52
Density local_inc 081 099 138 186 281 1.57
beam_del 008 0.17 044 0.89 209 0.73
layer_del 044 197 293 434 597 3.13
uniform 065 198 599 1336 2576 | 9.55
Noise gaussian 1.51 428 959 19.00 32.04 | 13.28
impulse 1.90 235 293 348 521 3.17
upsample 038 053 057 080 145 0.75
El cutout 585 11.28 1597 20.02 2331 | 1529
t.-) Density local_dec 1.89 10.18 14.87 1898 2255 | 13.69
% local_inc 799 1199 1378 1493 1542 | 12.82
=] shear 3.89 1513 37.03 63.05 77.20 | 39.26
FFD 227 1405 3525 5547 6731 | 3487
Transformation rotation 005 0.13 026 081 1.19 0.49
scaling 047 215 502 928 1652 | 6.69
translation 1.04 3.88 484 407 434 3.63
Average 379 631 1021 14.64 19.74 | 10.94

Table S1 shows the CE4p under different severity levels of
corruptions on Car detection. According to Table S1, except
scene-level {rain}, all corruptions follow a predictable trend,
i.e., the CE4p increases as the severity level increases. Table
S3 shows the recall loss (i.e., CE,...qy;) of different detectors
under different corruptions on Car detection.

B. Reacts of Detector Designing to Common Corruptions

Table S2 depicts the average precision (AP) loss (i.e., CE ap)
of one-stage and two-stage detectors on Car detection under
different common corruptions. Table S2 indicates that one-
stage detectors perform more robust against corruptions of
scene-level and object-level Noise, object-level Density, and
Transformation, while two-stage detectors are mainly more
robust against scene-level Density.

C. Detection Bugs in Detectors under Common Corruptions

Table S7 depicts the bug rates of different detectors on
Car detection. According to Table S7, we find there is
always an increase of FC and FD rate for all detectors. Table

TABLE S2: CE4p(%) of detectors with different proposal architectures on
Car detection( green cell for each corruption)

Corruption one-stage two-stage
rain 26.39 25.99
Weather snow 43.70 45.60
fog 1.63 2.07
uniform_rad 7.35 8.16
= gaussian_rad 8.96 10.17
E Noise impulse_rad 1.74 2.51
é background 2.38 3.06
E upsample 0.48 0.94
cutout 4.28 3.76
local_dec 15.18 13.96
Density local_inc 1.13 1.89
beam_del 0.78 0.70
layer_del 3.19 3.09
uniform 6.19 11.95
Noise glaussian 8.86 16.44
impulse 2.34 3.77
upsample 0.26 1.09
E cutout 14.91 15.55
% Density local_dec 13.20 14.04
£ local_inc 11.59 13.71
=] shear 39.12 39.37
FFD 34.13 35.40
Transformation rotation 0.38 0.56
scale 7.62 6.02
translation 3.27 3.89
mCEap 10.36 11.34
[ Clean [ Corrupted
1.00 r — o o o
0751 |. .
% . o o
~ N
A 0.50 s oo
H A
o . o o
0.25 8 N
8 H a
0.00 — e o — ——
0~-10 10~20 20~30 30-40 40~50 50~60 =60
Distance/m

Fig. S1: Box-plot of TD rate w.r.t. different distances of objects to the LIDAR
sensor (green dotted lines for the median and green triangles for the mean)

S8 depicts the bug rates of Car detection under different
corruptions. According to Table S8, {rain, snow} and scene-
level {uniform_rad, gaussian_rad} even reduce the rate of
missing objects, which has been analyzed in Section V-D. More
details of the increase of bug rates (i.e., C'R) are recorded in
Tables S4, S5, and S6.

Figure S1 shows the TD Rate of detections at different
distances of objects to the LiDAR sensor. As shown in
Figure S1, compared to clean observations, TD rates under
corrupted observations are always lower at any distance of
objects to LiDAR.

D. Robustness Enhancement by Data Augmentation and De-
noising

Table S9 and Figure S2 show CE 4p of different detectors
on Pedestrian detection and Car detection, respectively, with
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TABLE S3: CE,ccqi1(%) of different detectors under different corruptions on Car detection (the green cell with CE of over 18%)

Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-ssp Ceter- PVRCNN Centerpoint Center- 0|y oaoe
point ++ RCNN  former
rain 24.50 23.67 20.92 29.69 23.46 24.98 27.10 24.84 27.09 25.25 2450 2443 25.04
Weather snow 36.23 32.72 29.19 43.32 37.11 40.26 38.32  32.80 39.20 35.61 34.65 36.04 36.29
fog 4.22 5.30 3.14 2.36 245 243 2.28 3.47 6.99 4.82 4.44 4.68 3.88
uniform_rad 14.23 12.91 13.67 9.20 3.70 5.12 9.33 11.31 12.71 11.85 7.30 13.86 | 1043
= gaussian_rad| 17.74 15.67 17.46 11.30 4.81 6.39 11.29 1435 16.33 15.41 8.45 17.37 | 13.05
E Noise impulse_rad 4.17 4.47 4.32 3.93 3.86 5.02 2.11 4.05 4.36 4.08 1.78 3.26 3.78
é background 3.26 8.66 2.84 2.21 4.64 4.73 2.59 2.42 2.61 3.58 0.83 1.84 3.35
% upsample 0.94 2.58 1.20 0.93 0.94 0.68 0.80 0.76 1.60 0.68 0.42 1.02 1.05
cutout 4.87 4.61 5.55 4.05 4.37 3.55 4.45 5.55 5.36 5.15 550 533 4.86
local_dec 15.56 - 14.76 13.04 11.78 11.10 14.06 16.19 16.29 15.99 17.09 16.12 | 14.73
Density local_inc 1.58 2.62 1.59 1.66 1.70 1.48 1.21 1.56 1.89 1.44 0.65 1.38 1.56
beam_del 0.92 0.77 1.13 0.95 0.94 0.63 1.34 1.11 1.21 0.89 1.20 1.21 1.03
layer_del 3.48 3.37 3.59 3.12 3.13 2.74 3.37 3.78 3.93 3.67 4.31 3.69 3.51
uniform 9.60 10.19 6.74 9.22 2.65 3.67 7.05 5.82 9.33 8.65 4.07 8.88 7.16
Noise gaussian 12.69 13.02 9.16 12.05 3.84 5.18 9.06 7.78 12.76 11.92 5.20 11.42 9.51
impulse 2.11 3.14 1.88 2.03 1.99 1.94 1.95 1.86 2.43 2.15 1.23 1.89 2.05
upsample 0.77 1.71 0.96 1.00 0.44 0.26 0.44 0.57 1.17 0.74 -0.18 0.98 0.74
§ cutout 22.21 20.90 21.61 17.61 16.27 17.44 17.67 21.21 22.04 22.18 22.87 2244 20.37
j? Density local_dec 19.99 18.73 19.04 15.97 14.11 15.52 16.26  18.96 19.78 19.84 21.08 20.13 18.28
% local_inc 10.58 10.95 10.78 9.30 7.63 8.11 7.89 9.33 11.55 10.56 6.71 11.33 9.56
=} shear 22.13 25.19 25.06 23.26 22.14 20.61 21.70 2395 23.56 22.61 18.76  24.66 22.80
FFD 17.53 21.51 18.41 19.43 16.74 17.26 18.70 1843 19.17 18.60 17.31  20.55 18.64
Transformation| rotation 0.49 0.42 0.4 0.63 0.4 0.42 0.53 0.26 0.46 0.40 0.63 0.33 0.45
scaling 5.1 5.95 5.95 4.56 6.09 4.77 4.82 5.86 5.22 4.80 6.27 5.10 5.37
translation 3.79 3.42 3.78 4.69 5.32 4.66 2.39 4.26 4.07 4.05 2.90 3.32 3.89
MCE ecall 10.35 10.52 9.73 9.82 8.02 8.36 9.07 9.62 10.84 10.20 8.72 10.45 9.66
20 B origin
I PA-DA
+5.19 I KNN-RO
s | b PA-DA + KNN-RO
42,6442 40, +3.61 +2.82
= s lacasase T e s 242, 0o e +2,4J>‘ . 1251 5 50
8 +0.34 -0.09. = N
e oo +0.76 +0.0 on - 4 7| o 019
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Fig. S2: Average CE 4p(%) of different detectors on Car detection given common corruptions

PA-DA and/or KNN-RO. According to Table S9, adopting
KNN-RO slightly improves the AP by 0.37% without PA-DA
and 0.89% with PA-DA on Pedestrian detection, respectively.

Tables S10 depicts CE4p of Car detection with PA-DA
and/or KNN-RO under different corruptions. As shown in Table
S10, compared to the original detection, there is an average
increase of AP (i.e., a decrease of C E 4 p) on Car detection with
only PA-DA. By contrast, compared to the original detection,
there is an average decrease of AP (increase of CE4p) on
Car detection with KNN-RO and with PA-DA+KNN-RO. In
summary, KNN-RO makes the performance of point cloud
detection worse, namely less robust against corruptions.

Tables S11 depicts CE4p of Pedestrian detection with PA-
DA and/or KNN-RO under different corruptions. As shown
in Table S11, compared to the original detection, there is a
slight average increase of AP (i.e., a decrease of CE4p) on
Pedestrian detection with PA-DA, with KNN-RO, and with
PA-DA+KNN-RO.

APPENDIX B
CORRUPTION SIMULATION NATURALNESS VALIDATION

A. Snow and Fog Validation

To verify the naturalness of snow and fog simulation, we train
weather-oriented PointNet-based classifiers via data collected
in real snowy [15] and foggy [10] weather.

Training and Testing: As for snow/fog, we collect real
corrupted and clean data as training set Dy,.qi,, (including 50%
corrupted data and 50% clean data). We train the PointNet
model with Dy, to learn the model to classify the clean or
corrupted condition of point clouds. Then we gather the clean
and simulated corrupted KITTI data as testing set D;.,;: and
obtain the predictions of trained classifier on D;,g;.

Experiment Setting: We set the batch size to 32 for the
model training on the NVIDIA RTX A6000 GPU. We choose
PointNet as the classifier due to its efficiency and effectiveness
in recognizing the global feature [59], which fits into the global
effects of weather corruptions on LiDAR scanning.
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TABLE S4: CRpc (%) of detectors on Car detection under common corruptions
Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-ssp Center- PVRCNN Centerpoint Center- 0ol yoraoe
point ++ RCNN  former
rain 1.90 1.27 0.61 -0.01 -0.09 0.06 -0.01 2.29 0.85 2.40 0.33 1.98 0.96
‘Weather snow 2.17 2.01 0.71 0.03 0.17 0.12 -0.01 2.59 1.18 2.95 0.40 2.14 1.21
fog 0.03 0.02 0.10 0.02 0.21 0.16 0.04 0.16 -0.10 0.03 0.52 0.17 0.11
uniform_rad 1.35 0.82 1.27 0.00 -0.06 0.00 -0.01 1.29 1.08 1.95 0.21 1.63 0.79
= gaussian_rad 1.83 1.25 1.67 0.00 -0.06 0.01 0.00 1.62 1.32 2.58 0.30 2.09 1.05
E Noise impulse_rad 0.12 0.01 0.14 0.02 0.07 0.06 0.04 0.25 0.03 0.34 0.13 0.20 0.12
é background -0.18 0.20 -0.19 0.01 -0.22 -0.01 0.04 -0.20 -0.25 -0.17 -0.13  -0.24 -0.11
% upsample -0.01 0.03 0.03 0.01 -0.15 -0.02 0.01 -0.01 -0.03 0.08 -0.05 0.04 -0.01
cutout 0.21 0.13 0.16 0.03 0.18 0.15 0.04 0.12 0.14 0.19 0.20 0.27 0.15
local_dec 0.70 - 0.47 0.05 0.37 0.29 0.03 0.70 0.46 0.89 0.27 0.73 0.45
Density local_inc 0.04 0.02 0.05 0.01 0.00 0.05 0.05 0.04 0.01 0.05 0.05 0.03 0.03
beam_del 0.08 0.04 0.04 0.01 0.08 0.05 0.01 0.05 -0.01 0.07 0.02 0.08 0.04
layer_del 0.13 0.07 0.09 0.03 0.17 0.17 0.04 0.09 0.08 0.12 0.20 0.13 0.11
uniform 0.53 0.24 0.39 0.01 -0.01 0.00 0.00 0.32 0.02 0.72 0.04 0.65 0.24
Noise gaussian 0.71 0.32 0.50 0.01 -0.01 0.00 0.01 0.41 0.06 0.87 0.05 0.77 0.31
impulse 0.03 0.00 0.04 -0.01 0.00 0.02 0.00 0.00 -0.04 0.06 -0.01 0.06 0.01
upsample 0.06 0.00 0.12 0.00 0.01 0.02 0.03 0.04 -0.02 0.14 0.11 0.17 0.06
g cutout 0.38 0.03 0.51 0.08 0.49 0.41 0.04 0.40 0.29 0.32 0.41 0.57 0.33
= Density local_dec 0.26 -0.03 0.40 0.07 0.37 0.31 0.04 0.32 0.19 0.24 0.32 0.44 0.24
% local_inc 0.23 0.12 0.29 0.00 -0.13 -0.02 0.01 0.17 0.05 0.21 0.18 0.30 0.12
=] shear 0.16 -0.01 0.25 0.01 0.17 0.06 0.01 0.16 0.05 0.18 0.09 0.21 0.11
FFD 0.08 0.02 0.18 0.01 0.08 0.06 0.03 0.11 -0.03 0.16 0.03 0.14 0.07
Transformation rotation -0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.00 -0.03 0.00 0.03 0.00
scaling 0.02 0.00 0.03 0.01 0.02 0.01 0.03 0.00 -0.04 -0.01 0.02 0.04 0.01
translation 0.14 0.09 0.14 0.03 0.10 0.09 0.05 0.15 0.11 0.21 0.08 0.22 0.12
mCRprc 0.44 0.28 0.32 0.02 0.07 0.08 0.02 0.44 0.22 0.58 0.15 0.51 0.26
TABLE S5: CRprp (%) of detectors on Car detection under common corruptions
Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-ssp Center PVRCNN Centerpoint Center- (0o |4+ age
point ++ RCNN  former

rain 8.25 4.23 5.70 7.90 13.39 11.46 4.78 5.24 15.44 8.68 23.68 7.59 9.69
‘Weather snow 8.54 745 5.93 14.51 12.90 16.34 10.11 5.39 15.24 9.48 20.33 7.75 11.16
fog 0.82 0.11 0.62 -0.30 -0.84 -0.49 0.10 0.71 1.55 0.66 -0.62 0.06 0.20
uniform_rad 4.08 5.94 3.30 3.81 2.61 4.01 5.52 2.50 471 3.29 5.20 291 3.99
= gaussian_rad 4.88 6.83 3.87 431 3.34 4.94 6.44 3.02 5.52 4.15 6.42 3.46 4.76
E Noise impulse_rad 1.54 2.30 0.99 1.81 2.55 3.72 1.22 0.92 3.17 1.56 0.91 0.86 1.80
g background -0.34 2.25 -2.25 0.34 -3.22 -0.14 0.78 -2.14 -4.81 0.15 -6.51 -0.88 -1.40
% upsample -0.04 0.82 -0.34 0.34 0.29 0.14 0.69 -0.44 0.22 -0.05 =333 -0.14 -0.15
cutout 0.73 0.57 0.58 1.11 1.05 1.17 1.87 0.41 2.21 0.92 2.97 0.99 1.21
local_dec 3.79 - 2.77 3.40 3.44 4.29 443 2.83 9.31 4.21 9.58 3.76 4.71
Density local_inc 0.39 0.95 0.23 0.43 0.53 0.55 0.48 0.30 0.20 0.43 -1.51 0.28 0.27
beam_del 0.39 0.06 0.39 0.54 0.52 0.48 0.75 0.30 1.47 0.38 2.44 0.41 0.68
layer_del 0.98 0.54 0.79 1.25 0.98 1.01 1.36 0.73 247 1.09 2.56 0.93 1.22
uniform 2.30 4.51 1.25 2.85 1.37 2.13 3.01 1.10 2.46 2.22 2.14 2.00 2.28
Noise gaussian 3.11 6.00 1.70 3.99 1.98 3.11 391 1.47 3.49 3.20 2.70 2.59 3.10
impulse 0.89 1.47 0.53 1.40 1.06 1.32 1.43 0.53 1.14 0.98 0.75 0.66 1.01
upsample 0.28 0.79 0.22 0.33 0.24 0.13 0.95 0.16 0.09 0.25 -0.03 0.32 0.31
g cutout 2.29 -0.92 1.64 0.39 2.75 3.27 0.54 0.77 2.97 1.58 -1.59 2.32 1.33
:; Density local_dec 1.83 -1.15 1.27 0.10 2.02 2.57 -0.13 0.48 2.00 1.13 -2.18 1.86 0.82
% local_inc 3.54 5.44 2.54 4.81 343 4.74 6.77 2.31 3.58 3.76 341 2.69 3.92
=] shear 10.08 17.48 7.56 23.27 11.70 14.84 24.29 7.74 13.74 11.07 6.24 8.98 13.08
FFD 8.06 14.85 5.59 18.56 8.82 12.28 20.52 5.95 10.96 9.15 5.68 7.53 10.66
Transformation rotation 0.22 0.13 0.12 0.40 0.25 0.29 0.41 0.07 0.23 0.26 0.55 0.15 0.26
scaling 2.31 3.82 1.81 4.40 3.24 3.38 5.37 1.90 2.76 2.38 1.54 1.83 2.89
translation 1.58 1.09 0.87 1.55 2.78 3.24 1.09 0.88 3.36 1.61 3.78 1.31 1.93
mCRFp 2.82 3.56 191 4.06 3.09 3.95 4.27 1.73 4.14 2.90 3.40 241 3.19
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TABLE S6: CR);p (%) of detectors on Car detection under common corruptions

Corruption PVRCNN PointRCNN SECOND BtcDet VoTr-SSD VoTr-TSD SE-ssp Ceter- PVRCNN Centerpoint Center- 0ol yoaoe
point ++ RCNN  former

rain 933 463 342 1261 837 564 1101 489 1359 -1073 2280 -672 | 948
Weather snow 2071 347 062  -896 414 061 999 040  -5.82 401 -1724 002 | -3.87
fog -0.60 0.43 025  -054 677 653 270 -1.59 228 2030 129 249 | 1.19
wniform_rad | -2.10 578 298 451 279 362 463 245 303 176 384 134 | 324
= gaussian_rad| -2.32 6.42 303 -500  -3.37 428 517 268 -3.03 199 503 -138 | -3.64
B Noise impulse_rad | 0.26 551 085 223 245 289 -1.51 124 -1.19 135 006 018 | -0.99
B background | 7.43 701 1313 -LI12 1916 1067 510 1248  17.00 5.64 902 824 | 839
g upsample | 2.07 0.73 288 062 079 120 107 280 026 1.42 488 194 | 150
cutout 174 1.83 159 -101 177 053 -103 226 044 143 241 074 | 066
local_dec | -0.08 . 2009 324 218 038 344 034 -545 2129 821 030 | -1.76
Density local_inc | 0.39 -1L11 059  -037 105 .16 081 029 119 0.29 261 040 | 061
beam_del | -0.37 0.14 048 4102 -0.37 092 -127 022 -150 044 250 -007 | -075
layer del | 0.13 132 027 4100 1.02 055 099 020  -1.92 006 233 006 | -0.27
wniform 0.90 0.93 032 086  -0.15 2031 006 050 115 074 103 027 | 020
Noise gaussian 123 -1.00 049 133 -0.11 032 027 069 156 104  -126 041 | 036
impulse 0.13 -0.74 0.10 006 001 016 015 022 006 0.05 029 000 | -0.03
upsample | -0.02 -115 001 022  -0.07 001 009 005 020 .0.14 012 -017 | -0.13
E cutout 5.05 10.70 362 500 376 481 515 474 504 6.06 410 39 | 5.17
2| Density local_dec | 476 9.90 336 470 357 452 489 443 497 5.65 450 380 | 492
2 local_inc | 0.52 0.05 030 086 024 023 085 045 108 047 230 067 | 028
2 shear 0.01 20.60 005 040 -0.09 2018 005 022 -092 011 360 -024 | 042
FFD 0.08 111 004 072 002 0.05 108 024 043 002 316 -0.18 | -0.22
Transformation|  rotation 0.03 028 000 001  -006  -005 002 003 003 2006 036 -0.06 | -0.07
scaling 0.08 0.08 001 010  -0.03 004 031 009 006 001 069 002 | -0.01
translation | 0.29 129 045 027 -0.07 023 002 060  -070 024 286 -0.10 | -0.29
mCRpp 038 20.76 074 113 1.06 042 067 079 027 014 210 053 | 008

TABLE S7: Bug rates (%) of true detection, false classification, false
detection, and missing detection of different detectors (results on clean data
in parentheses)

Detector TD FC FD MD
PVRCNN 32.63 (36.27) 1.16 (0.72) 11.1 (8.28) 55.11 (54.73)
PointRCNN 47.11 (50.20) 0.68 (0.40) 16.04 (12.47) 36.17 (36.93)
SECOND 20.61 (23.57) 0.81 (0.49) 8.42 (6.51) 70.16 (69.43)
BtcDet 65.24 (68.19) 0.03 (0.01) 15.19 (11.13) 19.54 (20.67)
VoTr-SSD 27.95 (32.17) 0.62 (0.55) 13.52 (10.43) 57.91 (56.85)
VoTr-TSD 42.75 (47.20) 0.28 (0.20) 14.67 (10.72) 42.3 (41.88)
SE-SSD 64.56 (68.18) 0.05 (0.03) 15.72 (11.45) 19.67 (20.34)
Centerpoint 21.74 (24.70) 0.98 (0.54) 9.26 (7.53) 68.02 (67.23)
PVRCNN++ 36.71 (40.8) 0.93 (0.71) 22.8 (18.66) 39.57 (39.84)
Centerpoint_RCNN | 34.65 (38.27) 1.36 (0.78) 12.16 (9.26) 51.83 (51.69)
Centerformer 7.88 (9.34) 0.67 (0.52) 31.03 (27.63) 60.41 (62.51)
PartA2 24.75 (28.19) 1.17 (0.66) 10.02 (7.61) 64.06 (63.54)

Analysis: According to the snow classification in Table S12, the
validation accuracy of 99.11% illustrates the snow classifier’s
precise snow recognition on point clouds collected in the real
world. Hence, the classifier’s testing accuracy of 97.13% on
simulated data demonstrates the high naturalness of the snow
simulation. Likewise, even though the fog classifier’s validation
accuracy is reduced by the small data size, the testing accuracy
of 92.60% on simulated data still presents a high similarity of
data corrupted by simulated fog to data affected by real fog.

We further analyze the similarity of distribution of real and
simulated corrupted data. Specifically, we utilize T-SNE [76]
to visualize extracted the high-level features from the trained
classifier. As shown in Figures 2 and 3, the distributions of
the real and simulated corruptions are significantly similar. As
shown in Table S13, The maximum mean discrepancy (MMD)
[67] results quantitatively verify that the simulated snow/fog is
close to the real snow/fog, respectively, while not close to the

TABLE S8: Bug rates (%) of true detection, false classification, false detection,
and missing detection of detectors under different corruptions

Corruption TD FC FD MD
Clean 3892 047 11.81 48.80
rain 37774 143 2150 39.32
Weather snow 3042 1.67 2297 4493
fog 3742  0.58 12.00 49.99
uniform_rad | 37.38 126 15.80 45.57
= gaussian_rad | 36.75 1.52 16.57 45.16
H Noise impulse_rad | 38.00 0.59 13.60 47.82
é background 3205 036 1041 57.19
% upsample 37.59 046 11.65 50.30
cutout 3690 0.62 13.02 49.46
local_dec 3450 092 1646 48.12
Density local_inc 38.01 050 12.08 4941
beam_del 3895 051 1248  48.05
layer_del 37.86  0.58 13.03 48.53
uniform 3620 0.71  14.09  49.00
. gaussian 35.15 0.78 1491 49.16

Noise 8
impulse 3793 048 12.82 48.77
upsample 38.69 0.52 12,12 48.67
g cutout 32.10 0.80 13.14 5397
= Density local_dec 3294 071 12.62  53.72
% local_inc 3460 0.59 1573  49.09
=] shear 26.15 0.58 24.89 4839
FFD 28.41 0.54 2247 4858
Transformation rotation 3873 047 1206 48.74
scaling 36.02 048 1470 48.80
translation 37.17 058 13.73 4851

clean data.

B. Rain Validation

In Figure 1, data of real clean and real rain from Boreas
were sampled at the same location but at different time-
stamps; the data of simulated rain was augmented on the
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TABLE S9: Average CE 4 p (%) of different detectors on Pedestrian detection
with DA and/or denoising

Detector Origin PA-DA KNN-RO PA-DA + KNN-RO
PVRCNN 871  10.6(+1.89) 8.2(-0.51) 10.05(+1.34)
PointRCNN 8.43 3.73(-4.7)  7.05(-1.38) 3.57(-4.86)
SECOND 838  7.63(-0.75) 8.46(+0.08) 7.76(-0.62)
Centerpoint 7.19 5.37(-1.82) 7.08(-0.11) 5.21(-1.98)
PVRCNN++ 9.67 10.93(+1.26) 9.41(-0.26) 10.92(+1.25)
Centerpoint RCNN | 9.22  6.19(-3.03)  8.78(-0.44) 5.6(-3.62)
Centerformer 6.78 7.58(+0.8)  7.05(+0.27) 8.3(+1.52)
PartA2 10.18  10.72(+0.54)  9.6(-0.58) 10.06(-0.12)
Average 8.57  7.84(-0.73)  8.2(-0.37) 7.68(-0.89)

TABLE S10: Average CE 4 p(%) of detectors given different corruptions on
Car detection with DA and/or denoising (differences between enhancement
methods and Origin are in parentheses)

Corruption Origin  PA-DA KNN-RO PA-DA+KNN-RO
rain 26.16 27.29(+1.13) 31.63(+547)  32.47(+6.31)
Weather snow | 44.81 45.05(+0.24) 46.94(+2.13)  47.12(+2.31)
Jfog 1.89  1.91(+0.02) 5.12(+3.23) 5.06(+3.17)
uniform_rad | 7.83  7.51(-0.32) 10.74(+291)  10.37(+2.54)
= gaussian_rad | 9.67  9.12(-0.55) 12.62(+2.95) 11.98(+2.31)
E Noise impulse_rad | 2.19  1.82(-0.37) 4.75(+2.56) 4.28(+2.09)
é background | 2.77  2.72(-0.05) 2.05(-0.72) 2.03(-0.74)
% upsample 0.75 0.59(-0.16) 3.42(+2.67) 3.22(+2.47)
cutout 398  3.89(-0.09) 6.57(+2.59) 6.41(+2.43)
local_dec 14.52 14.76(+0.24) 16.7(+2.18) 16.92(+2.4)
Density local_inc 1.57  1.38(-0.19) 4.23(+2.66) 4.03(+2.46)
beam_del | 074 0.79+0.05) 336(+2.62)  3.33(+2.59)
layer_del 3.13  3.24(+0.11) 6.09(+2.96) 6.18(+3.05)
uniform 9.55 8.43(-1.12) 12.05(+2.5) 11.06(+1.51)
Noise gaussian 1328 11.91(-1.37) 15.71(+2.43) 14.42(+1.14)
impulse 3.17  3.19(+0.02) 5.97(+2.8) 5.93(+2.76)
upsample 0.75  0.59(-0.16) 2.63(+1.88) 2.39(+1.64)
‘g cutout 15.28 14.95(-0.33) 17.0(+1.72) 16.68(+1.4)
Té' Density local_dec 13.69 13.56(-0.13) 16.05(+2.36) 15.88(+2.19)
£ local_inc | 12.82 11.77(-1.05) 15.02(+22)  14.06(+1.24)
=] shear 39.26 39.35(+0.09) 40.14(+0.88)  40.11(+0.85)
FFD 34.87 3434(-053) 39.3(+4.43)  38.89(+4.02)
Transformation rotation 0.49 0.52(+0.03) 3.05(+2.56) 3.05(+2.56)
scaling 6.69  6.7(+0.01) 9.14(+2.45) 9.12(+2.43)
translation | 3.63  3.34(-0.29) 6.02(+2.39) 5.58(+1.95)
Average 10.94 10.75(-0.19) 13.45(+2.51) 13.22(+2.28)

basis of the data of real clean. According to Figure 1,
compared with the data of real clean, the point cloud under
simulated rain has sparse “false points” (as in red boxes)
surrounding the LiDAR sensor nearby and wipes out some
points on the road. Both are similar to the effects of real-
world rain, shown by the yellow boxes and missing points
on the road. More comparisons between real rainy data and
simulated rainy data are shown in Figure S8 in the website
https://sites.google.com/ualberta.ca/robustness 1 pc2detector/.

APPENDIX C
IMPLEMENTATION OF CORRUPTION SIMULATION

Figures S9 to S34 in the website https://sites.google.com
/ualberta.ca/robustness1pc2detector/ display the point cloud
examples under “clean” and simulated common corrup-
tions (at severity level of 3). For implementation de-
tails of the simulation, please refer to the website
https://sites.google.com/ualberta.ca/robustness 1 pc2detector/.

TABLE S11: Average CE 4 p(%) of detectors given different corruptions on
Pedestrian detection of with DA and/or denoising (the differences between
enhancement methods and Origin are in parentheses)

Corruption Origin  PA-DA KNN-RO PA-DA+KNN-RO
rain 372 2.82(-0.9) 2.97(-0.75) 2.29(-1.43)
Weather snow 3.38  3.56(+0.18) 2.58(-0.8) 2.79(-0.59)
fog 1042 7.79(-2.63) 10.19(-0.23) 7.35(-3.07)
uniform_rad | 29.85 25.22(-4.63) 29.59(-0.26) 25.2(-4.65)
- gaussian_rad | 36.50 31.91(-4.59) 36.37(-0.13) 32.0(-4.5)
2 Noise impulse_rad | 1.84 4.41(+2.57) 1.83(-0.01) 4.3(+2.46)
é background | 0.48 1.02(+0.54) -0.09(-0.57) 0.77(+0.29)
% upsample 123 2.13(+0.9) 0.99(-0.24) 1.96(+0.73)
cutout 832  7.54(-0.78) 8.12(-0.2) 7.28(-1.04)
local_dec | 21.07 15.93(-5.14) 16.83(-4.24) 15.92(-5.15)
Density local_inc 1.35  2.14(+0.79) 1.24(-0.11) 1.99(+0.64)
beam_del 0.39  1.16(+0.77) 0.28(-0.11) 0.89(+0.5)
layer_del 450 4.44(-0.06) 4.37(-0.13) 4.27(-0.23)
uniform 4.05 3.64(-0.41) 3.94(-0.11) 3.48(-0.57)
Noise gaussian 542 4.84(-0.58) 5.32(-0.1) 4.73(-0.69)
impulse 1.86  2.44(+0.58) 1.88(+0.02) 2.36(+0.5)
upsample | -0.17  0.43(+0.6) -0.41(-0.24) 0.29(+0.46)
g cutout 21.09 19.38(-1.71) 20.97(-0.12) 19.44(-1.65)
:‘; Density local_dec | 18.12 16.9(-1.22) 18.12(+0.0) 17.03(-1.09)
2 local_inc | 846  6.76(-1.7)  8.3(-0.16) 6.71(-1.75)
o shear 17.37 14.64(-273) 17.22(-0.15)  14.44(-2.93)
FFD 1226 11.5(-0.76) 12.13(-0.13)  11.39(-0.87)
Transformation rotation 0.07 1.0(+0.93) -0.18(-0.25) 0.91(+0.84)
scaling 3.87 4.73(+0.86) 3.64(-0.23) 4.61(+0.74)
translation | -1.18 -0.25(+0.93) -1.12(+0.06) -0.28(+0.9)
Average 8.57 7.84(-0.73)  8.2(-0.37) 7.68(-0.89)
TABLE S12: Classification on real and simulated data
Corruption ’Qaining T esting
dataset size val accuracy | dataset size test accuracy

snow Boreas 24292 99.11% KITTI 14962 97.13%
fog STF 1787 80.00% KITTI 14962 92.60%

TABLE S13: MMD distances of different features transformed by T-SNE

Real vs Simulated Simulated vs Clean Real vs Clean
Snow 0.0549 0.1446 0.1445
fog 0.0302 0.1212 0.1295



https://sites.google.com/ualberta.ca/robustness1pc2detector/
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