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Two complementary tasks: To perform two complementary tasks simultaneously Linear Invariant Features: Previous work (1) Face recognition (153,000 semi-synthetic image dataset): 1000
using a single unsupervised feature extractor. [1] builds linear invariant that are implicitly subjects with 153 poses each. Images rendered from a 3D model with real
. (but not explicitly) discriminative. When a texture. We compare DIKF against sampled templates (NDP) and
Who is this SUbjECt? group of transformations act on an ObjECt, discriminative linear templates (D”_F)

they createanorblt. (2) Face recognition (LFW): Max-pooled DIKF (in red) matches state-of-the-

art results on two LFW protocols, despite being simpler than competing
methods and working on raw pixels.

To characterize the orbit, previously simply sampled 3) pose estimation: 15 poses (-40 to 40 yaw and -20 to 20 pitch, step of
templates were used. Explicit discrimination provides 5ay Train on the 250 subjects and test on the 1500 images of the remaining

better matching. JL JL 1?0

. What is the subject’s pose?

Landmark-free: The paper focuses on dense landmark-free (only two eye center
locations) face recognition and pose estimation.
Also extends to a completely landmark-free approach which is also alignment free.
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Invariant implicitly discriminative feature.
The ApproaCh o Definition 3.1 (Unitary Kernel). We define a kernel | |
k(x,y) = (o(x),¢(y)) to be a unitary kernel if, for a e e "“;ageffef”?'fffﬂ'Lab‘“"f”fet":“tf';df:f?ataPff‘j;‘:!’
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group invariant non-linear feature for both tasks from raw pixels. o IS Invariant IO OIIPTI= T '

_ : : _ Theorem 3.2 (DIKF filters form a set of transformed tem- Y il
Invariance to Transformations: Nuisance transformations groups such as the O € plates in the kernel space under a group). Given a group £/ -~ 08 RN e Image
translation, rotation group, increase complexity of the learning problem. Invariance to | S | G of unitary transformation elements g with |G| = N, —s= A7 g / restricted
such transformations can drastica”y reduce Complexity_ !\Ion-llnea:r D!SC.:rlm_lnatlve Invariance: To if k(z,y) = (o(x),d(y)) ie. k is a unitary kernel., and 2o _I)IU)()\((“DH\,; BHHE 0'4' | ’ Ei;;’:;i'\l[‘i}gni"\l'”"""’
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'® ) Invariant Kernel Features. is a set of transformed templates under a group.
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