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Papeank:

Attention based model [1] can automatically fix its gaze on the salient objects Enforcing attention in the training images: We heuristically choose 7 blur levels. Pre-processing on 400K PCSO testing images:

(regions) in the image while generating the image caption word by word. Gaussian blur kernel with o = 7.  Row 1: random missing pixel occlusions

 Row 2: random additive Gaussian noise occlusions

 Row 3: random contiguous occlusions

* Percentage of degradation for Row 1-3: 10%, 25%,
35%, 50%, 65%, 75%.

 Row 4: various zooming factors (2x, 4x, 8x, 16x) for —
low-resolution degradations e

Q: Can we control / enforce the attention shift in CNN?:

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”

(top row) vs “hard”™ (bottom row) attention. (Note that both models generated the same captions in this example.)
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Random missing pixels occlusions: Random additive Gau35|an noise occlusmns
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The periocular region has been shown to provide the most important cues
for determining gender information. The periocular region is also the most 56.19% 68.57% 73.33%

salient region on human faces. . . . .
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— — = « Training starts with the first epoch group
| ' | | | (Epoch Group O, images with no blur), and

the first CNN model M, Is obtained and
frozen after convergence.

 Then we input the next epoch group for B
tuning the M, and produce M. G,fu(:fk_,

« AlexNet with 2-way softmax.

» Each M, (j=0,...,k) is trained with 1000
epochs W|th batch3|ze of 128.

« progressively training the CNN using
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Random contiguous occlusions: Low-resolution degradations:

.ﬂI\dditive Galussian Noi.se 10% ‘ oe.s f‘\dditive Galussian Noise 25% ‘ o5 additive Ga‘ussian Noilse 35% . Low Resolution 2x Zooming Factor Low Resolution 4x Zooming Factor

Q: How can we let the CNN shift its attention towards the periocular
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