

FakePolisher: Making DeepFakes More Detection-Evasive by Shallow Reconstruction

Yihao Huang¹, Felix Juefei-Xu², Run Wang³, Qing Guo³, Lei Ma⁴, Xiaofei Xie³, Jianwen Li¹, Weikai Miao¹, Yang Liu^{3,5}, Geguang Pu¹

¹East China Normal University, China ²Alibaba Group, USA ³Nanyang Technological University, Singapore ⁴Kyushu University, Japan ⁵Zhejiang University, China

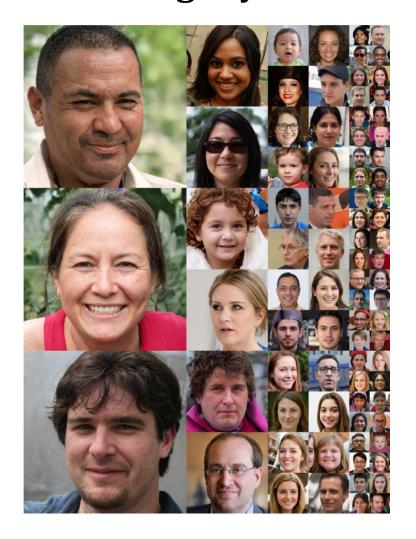
What is DeepFake?

Can you select out the real image?

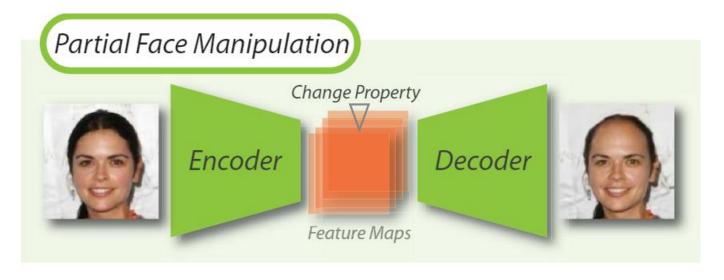
GAN-based image generation

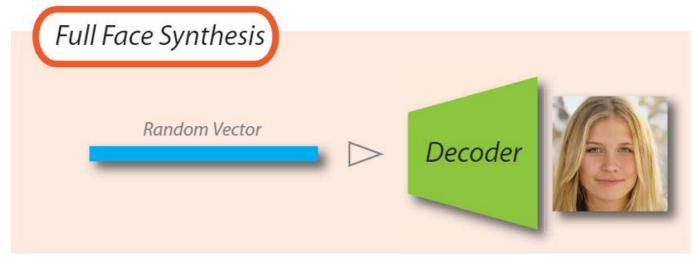
Partial image manipulation

Full image synthesis



Architecture of GAN-based image generation

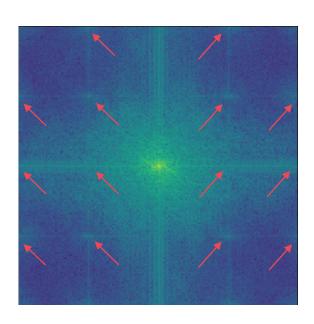




Artifact patterns

Upsampling introduce the artifact patterns!

Spatial domain

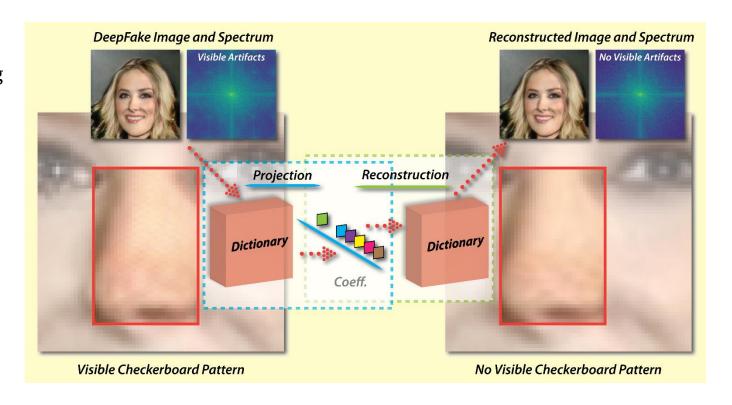


Frequency domain

FakePolisher

Contribution:

- Dictionary learning-based post-processing shallow reconstruction method
- Does not rely on any information of the GAN used for generation
- Fooling three representative SOTA fake image detection methods over fake images generated by 16 GAN-based methods.
- Indicating that existing methods can highly leverage the manipulation of footprint information from different perspectives.



Procedure of FakePolisher

There are three steps:

- 1. Train a dictionary model with a real image dataset
- Seek the representation of a DeepFake image by linear projection or sparse coding depending on the over-completeness of the learned dictionary
- 3. Reconstruct the 'fake-free' version of the DeepFake image by using the said dictionary

Global vs. Local Dictionary Learning

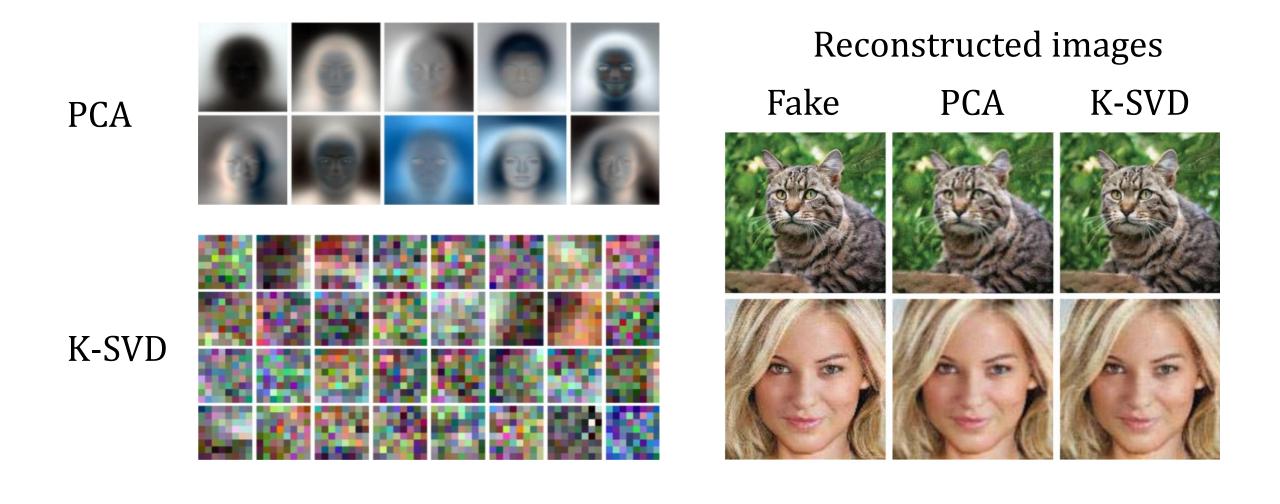
Global dictionary learning

- Spans the entire image
- Suitable for face align images

Local dictionary learning

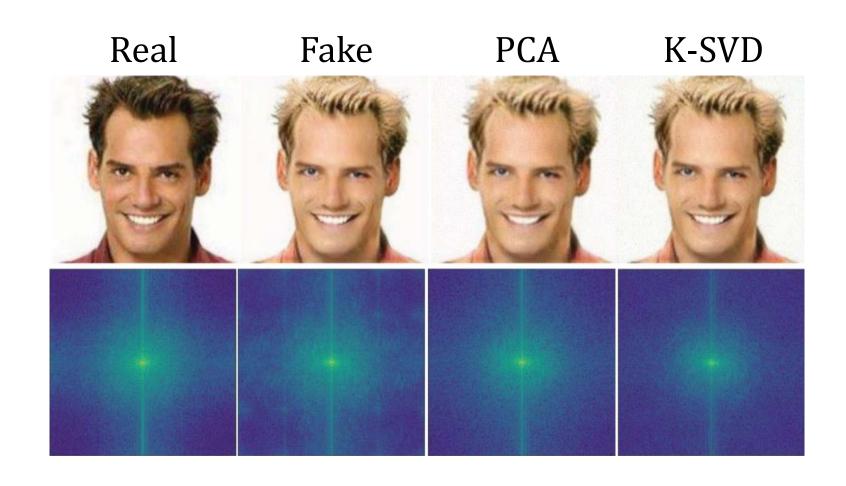
- Local patch-based
- Suitable for ImageNet images

Dictionary and reconstructed images



Comparison of spectrum

No artifact patterns in reconstructed images!



Experiment Setup

Dataset:

CelebA, FFHQ, LSUN

Detectors:

- (fingerprint-based) GANFingerprint
- (spectrum-based) DCTA
- (image-based) CNNDetector

GAN-based image generation methods:

 ProGAN, SNGAN, CramerGAN, MMDGAN, StyleGAN, BigGAN, CycleGAN, StarGAN, GauGAN, CRN, IMLE, SITD, SAN, DeepFakes, StyleGAN2, whichfaceisreal

Experiment

Detector:

- GANFingerprint Accuracy reduction (PCA): on average 63.09%, worst case:92.92% Accuracy reduction (K-SVD): on average 45.39%, worst case:62.17%
- DCTA
 - Accuracy reduction (PCA): on average 72.57%, worst case:72.57% Accuracy reduction (K-SVD): on average 68.55%, worst case:68.55%
- CNNDetector
 - Accuracy reduction (PCA): on average 43.70%, worst case:93.30% Accuracy reduction (K-SVD): on average 19.40%, worst case:54.00%

Experiment

Similarity metrics:

- Cosine similarity (COSS)
- Peak signal-to-noise ratio (PSNR)
- Structural similarity (SSIM)

Experiment

		ProGAN	SNGAN	CramerGAN	MMDGAN
	COSS	0.999	0.999	0.998	0.999
PCA	PSNR	32.33	32.67	31.85	32.28
	SSIM	0.960	0.960	0.957	0.959
	COSS	0.999	0.999	0.999	0.999
K-SVD	PSNR	33.224	33.526	32.897	33.304
	SSIM	0.972	0.972	0.971	0.972

		BigGan	DeepFakes	GauGAN	IMLE	SAN	SITD	StarGAN	Whichfaceisreal	CycleGAN					StyleGAN			StyleGAN2				
		-	person	-	road	-	-	person	person	horse	zebra	winter	orange	apple	summer	bedroom	car	cat	horse	church	car	cat
PCA	COSS	0.996	0.999	0.996	0.999	0.989	0.987	0.999	0.997	0.997	0.995	0.996	0.998	0.997	0.995	0.998	0.994	0.998	0.997	0.997	0.995	0.999
	PSNR	29.14	43.94	29.62	32.72	25.29	29.29	37.08	29.21	29.28	27.39	28.50	31.51	30.19	28.10	30.53	25.98	32.47	29.91	28.07	27.22	34.70
	SSIM	0.897	0.993	0.902	0.945	0.821	0.886	0.975	0.899	0.896	0.870	0.885	0.917	0.910	0.877	0.916	0.844	0.933	0.899	0.881	0.864	0.954
	COSS	0.998	0.999	0.999	0.999	0.999	0.991	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.998	0.999	0.999
K-SVD	PSNR	32.17	39.46	39.14	39.58	36.51	31.38	38.63	37.50	33.55	32.39	32.58	33.70	33.48	31.99	33.56	33.50	34.93	34.24	31.18	34.34	37.35
	SSIM	0.961	0.988	0.965	0.986	0.986	0.962	0.987	0.980	0.969	0.967	0.966	0.961	0.966	0.961	0.968	0.971	0.973	0.969	0.956	0.973	0.980
		ProGAN													CRN							
		airplane	motorbike	tvmonitor	horse	sofa	car	pottedplant	diningtable	sheep	bottle	person	train	dog	cow	bicycle	cat	bird	boat	chair	bus	road
	COSS	0.998	0.995	0.997	0.996	0.998	0.995	0.994	0.996	0.996	0.997	0.996	0.996	0.997	0.997	0.994	0.997	0.997	0.996	0.997	0.995	0.998
PCA	PSNR	29.74	26.14	28.17	27.94	29.61	27.49	26.15	27.12	28.13	29.21	28.95	27.49	29.59	28.24	26.02	30.39	29.16	27.94	28.74	26.68	31.13
	SSIM	0.913	0.867	0.898	0.883	0.991	0.884	0.858	0.881	0.878	0.908	0.901	0.875	0.905	0.882	0.860	0.917	0.899	0.880	0.904	0.867	0.932
	COSS	0.999	0.998	0.998	0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.999	0.998	0.998	0.999	0.998	0.998	0.999	0.998	0.999
K-SVD	PSNR	33.73	30.76	32.37	32.49	32.94	32.01	30.43	31.73	32.01	32.49	33.13	31.65	33.34	32.00	30.70	33.90	32.82	31.88	32.78	31.37	37.49
	SSIM	0.974	0.965	0.972	0.968	0.070	0.970	0.959	0.968	0.963	0.968	0.973	0.963	0.970	0.965	0.963	0.973	0.968	0.964	0.971	0.065	0.985

Thanks for listening!