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Why do we need illumination normalization?

• Leads to better human perception and recognition.
• Leads to better machine perception and recognition.

Figure 1: From [Zhang et al., 2015] Quaternion-Based LBP for Illumination
Invariant Face Recognition
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Two Pillars of Quality Illumination Normalization

Faithfulness
Faithfulness means that the algorithm can recover an illumination
normalized image that is of high visual fidelity compared to the neutrally
illuminated image of the same person taken under the same setting
(pose, expression, etc.).

Expressiveness
Expressiveness means that the illumination normalized image can fully
express the identity information of the subject and thus can improve face
recognition performance, and most importantly, even when using the
simplest possible classifier, e.g. nearest neighbor classifier based on
normalized cosine distance.
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Related Work

[Han et al., 2013]
provided a comparative study on 12 representative illumination
preprocessing methods and grouped them into 3 categories:

• (1) grey-level transformation e.g. histogram equalization,
logarithmic transform,

• (2) gradient or edge extraction e.g. Laplacian of Gaussian,
• (3) reflectance field estimation e.g. work of [Tan and Triggs, 2010].

The authors have the following conclusion that we also share:
“for face recognition purpose, better visualization effect after illumination
preprocessing does not imply higher recognition accuracy.”
This reiterates why satisfying both goals is important for a quality
illumination normalization method.
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Related Work

• [Han et al., 2012]
• [Chen et al., 2011]
• [Wang et al., 2013]
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Main Idea

Intuitive and straight-forward. It aims at transforming a dark image
patch to a bright (illumination normalized) one with distinguishable
details by keeping the partial orders of the pixels.
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Figure 2: A toy example showing the main idea behind the Pokerface which is to
maximize the minimum gap ε between adjacently-valued pixels while keeping the
partial ordering. The bins inside the green ellipse correspond to the “S” pattern.
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The goal of the Pokerface is exactly to maximize the minimum gap (ε)
between adjacently-valued pixels while preserving the partial ordering of
the pixels. The latter is to guarantee that the local edge information is
well preserved when normalizing a dark image to a bright one. We will
formulate this optimization problem in the context of order theory.
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Overview of the Pokerface

1
2

3
4

5

1

2

3

4

5
0

50

100

150

200

250

1
2

3
4

5

1

2

3

4

5
0

50

100

150

200

1
2

3
4

5

1

2

3

4

5
50

100

150

200

250

300

1
2

3
4

5

1

2

3

4

5
0

50

100

150

200

250

Phase 2: Energy Repressing
Phase 1: Partial Order Keeping

L0-Regularized 

Sparse 

Approximation

L1-Regularized

Total Variation 

Minimization

Well-illuminated 

Face from YaleB 

Subject#1

Input 

Dark Face
Feasibility 

Search via LP

2324

12

3

4

5

6

2522

9

18 19 20

21

15

16 17

13 14

7 11

12

8

10

2324

12

3

4

5

6

2522

9

18 19 20

21

15

16 17

13 14

7 11

12

8

10

23 24

1

2

3

4

56

25

22

9

18

19

20

21

15

16

17

13

14

7

11

12

8

10

23 24

1

2

3

4

56

25

22

9

18

19

20

21

15

16

17

13

14

7

11

12

8

10

Figure 3: The flowchart of the Pokerface. Phase 1 Partial Order Keeping is
accomplished by feasibility search via LP, and Phase 2 Energy Repressing is
achieved by `1-regularized total variation minimization and `0-regularized sparse
approximation. (Phase 1 does 80% of the job.)
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Definition I

Definition
A binary relation R on a nonempty set X is reflexive if x R x for every
x ∈ X. It is antisymmetric if x R y implies y R x, for every x, y ∈ X.
It is transitive if x R y R z implies x R z, for every x, y, z ∈ X.

Definition
A binary relation % on a nonempty set X is a preorder on X if it is
transitive and reflexive. It is a partial order on X if it is an
antisymmetric preorder on X.

Definition
A preordered set is an ordered pair (X,%), where X is a nonempty set
and % is a preorder on X.
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Definition II
Definition
A preordered set (X,<) is a partially ordered set, or poset, if < is a
partial order on X. (important)

Definition
Let (X,<) and (Y,<) be two partially ordered sets. The
order-preserving map from (X,<) into (Y,<) is a function f : X 7→ Y
such that a < b implies f(a) < f(b) for every a, b ∈ X. (important)
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Problem Formulation

For every pixel Xi,j in the (zero-padded) face image under extreme
illumination condition (or “dark face”), we consider an odd-sized N ×N
(N = 3, 5, 7, ...) square region around it such that Xi,j is the center pixel
of the patch. These N2 pixels in the patch form a partially ordered set
(Xi,j ,<).

Let Yi,j be the counterpart of Xi,j in the bright (illumination normalized)
face where (Yi,j ,<) is also a partially ordered set containing the center
pixel Yi,j and its neighboring pixels within a patch of the bright face.

Moreover, let function fi,j : Xi,j 7→ Yi,j be an order-preserving mapping
from (Xi,j ,<) to (Yi,j ,<) such that a < b implies fi,j(a) < fi,j(b) for
every a, b ∈ Xi,j .
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Problem Formulation

We adopt a shifting-window approach where we only establish the binary
relations between the center pixel and its (N2 − 1) neighbors, rather
than a fully-paired case with 1

2
(N2

2
)

binary relations.

Readers can easily verify that establishing the relations between only the
center pixel and its neighbors for an N ×N patch under shifting-window,
is equivalent to establishing fully-paired relations within each window of
width (N−1

2 + 1), as depicted in orange color in Figure 4.
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Problem Formulation

Figure 4: For each N ×N patch, the center pixel is plotted as a colored square,
and its neighbors are plotted as dots with the same color. With the window
shifting, the orange region is the largest region where pixels inside can have
fully-paired binary relations.
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Problem Formulation

Now, we can formulate the main idea of the Pokerface using the following
optimization where we aim at maximizing the minimum gap (ε) between
partially ordered pixels while keeping the same partial ordering (<).

maximize
ε

ε (1)

subject to ∀a, b ∈ Xi,j , ∀i, j, fi,j(a) < fi,j(b) + ε

0 ≤ min(fi,j(a), fi,j(b)) ≤ max(fi,j(a), fi,j(b)) ≤ 255

However, this optimization requires explicit knowledge of every mapping
function fi,j which is neither efficient nor feasible to learn. Thanks to the
reformulation to be discussed next, we can obtain the bright face without
explicitly knowing the mapping functions fi,j , while, most importantly,
satisfying the partial order constraints.
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Feasibility Search via LP

Suppose we have a dark face of size m× n as shown in Figure 5. Each
Xi,j corresponds to the pixel intensity at location (i, j) and the arrow
pointing from Xi,j to Xk,l means that the pixel intensity at (i, j) is
greater than that at (k, l). If (i, j) and (k, l) have the same intensity, the
arrow points to both directions and is shown in blue.

X1,1

Xi,1 Xi,2 Xi,jXi,3 Xi,4

X1,2 X1,3 X1,4 X1,j X1,n-1 X1,n

X2,1 X2,2 X2,3 X2,4 X2,j X2,n-1 X2,n

X3,1 X3,2 X3,3 X3,4 X3,j X3,n-1 X3,n

X4,1 X4,2 X4,3 X4,4 X4,j X4,n-1 X4,n

Xm,1 Xm,2 Xm,3 Xm,4 Xm,j Xm,n-1 Xm,n

Xm-1,1 Xm-1,j Xm-1,n-1 Xm-1,n

Xi,n-1 Xi,n

Xm-1,2 Xm-1,3 Xm-1,4
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Feasibility Search via LP

X1,1

Xi,1 Xi,2 Xi,jXi,3 Xi,4

X1,2 X1,3 X1,4 X1,j X1,n-1 X1,n

X2,1 X2,2 X2,3 X2,4 X2,j X2,n-1 X2,n

X3,1 X3,2 X3,3 X3,4 X3,j X3,n-1 X3,n

X4,1 X4,2 X4,3 X4,4 X4,j X4,n-1 X4,n

Xm,1 Xm,2 Xm,3 Xm,4 Xm,j Xm,n-1 Xm,n

Xm-1,1 Xm-1,j Xm-1,n-1 Xm-1,n

Xi,n-1 Xi,n

Xm-1,2 Xm-1,3 Xm-1,4

Figure 5: In Phase 1, the illumination normalized image y = {Yi,j},∀i, j should
have the same partial ordering as the dark face x = {Xi,j},∀i, j.
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Feasibility Search via LP

We want our illumination normalization algorithm to preserve the partial
ordering in every local image patch. In other words, the bright face image
should have exactly the same partial ordering as the input dark face.

Take X3,3 for instance, in its 3× 3 neighborhood (the green box), these
9 pixels form a partially ordered set (X3,3,<), and the partial order
characteristic (<) can be written as the following by comparing the
center pixel X3,3 to its 8 neighbors:

X3,3 < X2,2 X3,3 > X3,2 X3,3 < X4,2

X3,3 > X4,3 X3,3 > X4,4 X3,3 > X3,4

X3,3 = X2,4 X3,3 < X2,3 (2)
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Feasibility Search via LP

Xi,j > Xk,l ⇔ Xi,j ≥ Xk,l + 1.

Xi,j = Xk,l ⇔ Xi,j ≥ Xk,l + 0 and Xk,l ≥ Xi,j + 0.

Therefore, relations in (2) become:

(+1)X3,3 + (−1)X2,2 ≤ −1, (−1)X3,3 + (+1)X3,2 ≤ −1
(+1)X3,3 + (−1)X4,2 ≤ −1, (−1)X3,3 + (+1)X4,3 ≤ −1
(−1)X3,3 + (+1)X4,4 ≤ −1, (−1)X3,3 + (+1)X3,4 ≤ −1
(+1)X3,3 + (−1)X2,3 ≤ −1, (−1)X3,3 + (+1)X2,4 ≤ 0
(+1)X3,3 + (−1)X2,4 ≤ 0 (3)
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Feasibility Search via LP

Relation (3) is a set of linear constraints that pixel X3,3 has to satisfy in
order to keep the partial ordering. By scanning through all the pixels in
the input dark image, we can generate the complete list of constraints.

According to this setup, let x be a vector containing all the Xi,j ’s, we
can write all of the linear constraints in matrix form: Ax ≤ b, where A
should be a sparse matrix whose non-zero elements are either +1 or −1
and the locations of +1 and −1 indicate which Xi,j and Xk,l are being
compared. b should be a vector whose elements are either −1 or 0,
indicating the corresponding RHS of the inequality constraints, which is
the minimum gap between pairs of pixels. Since we are dealing with 8-bit
grayscale image, all the Xi,j should be within the range 0 to 255.
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Feasibility Search via LP

Recall that Yi,j is the counterpart of Xi,j , and each patch around Yi,j
forms a partially ordered set Yi,j having the same ordering (<) as Xi,j .
Let lli,j be the lth lower-valued neighboring pixel of Yi,j , and similarly,
hhi,j be the hth higher-valued neighboring pixel of Yi,j .

The optimization (1) can be reformulated as:

maximize
ε

ε (4)

subject to (−1)Yi,j + (+1)lli,j ≤ −ε, ∀l, ∀i, j
(+1)Yi,j + (−1)hhi,j ≤ −ε, ∀h, ∀i, j
0 ≤ Yi,j ≤ 255, ∀i, j
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Feasibility Search via LP

Since we know that each lli,j and hhi,j is actually some pixel Yk,l in the
bright face, whose partial order should be precisely captured by the linear
constraints Ay ≤ εb, (ε = 1, 2, 3, ...), where y is a vector containing all
the Yi,j ’s. It is worth noting that here matrix A and vector b are directly
obtained from the partial order characteristics of the dark face.
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Feasibility Search via LP

For a known gap ε, finding the bright face y under linear constraints
Ay ≤ εb is a feasibility search problem [Boyd and Vandenberghe, 2004],
which can be efficiently solved using linear programming by setting the
objective function to be 0. The feasibility search problem, also called the
satisfiability problem, can be regarded as the special case of
mathematical optimization where the objective value is the same for
every solution, and thus any solution is optimal. We increase ε greedily
until the solution is no longer feasible.

find y (5)
subject to Ay ≤ εb
0 ≤ ys ≤ 255, s = 1, 2, . . . ,m× n
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Phase 1: Partial Order Keeping Is Done

That’s 80% of the job done.

Phase 2: Energy (of the gradient map after Phase 1) Repressing is
achieved by two steps: an `1-regularized total variation minimization step
and an `0-regularized sparse approximation step.
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`1-Regularized Total Variation Minimization

After Phase 1 of the Pokerface, the intermediate face may show some
non-smooth artifacts. This is because during Phase 1, there are no
smoothness constraints to be satisfied in the optimization. This is done
purposefully, we want a subsequent step down the line to perform the
smoothing task, rather than solving a single convoluted multi-purpose
optimization.

The concept of total variation (TV) was introduced in computer vision
first by Rudin, Osher and Fatemi [Rudin et al., 1992]. However, it is very
difficult to be minimized by conventional methods. Therefore, we resort
to an iterative split Bregman method [Goldstein and Osher, 2009] for
solving the total variation minimization problem. The split Bregman
method can solve a series of `1-regularized problem in the form of:
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`1-Regularized Total Variation Minimization

minimize
u

|Φ(u)|+H(u) (6)

where | · | denotes the `1 norm, and both |Φ(u)| and H(u) are convex
functions. Following this, the isotropic total variation minimization
problem can be formulated as:

minimize
u

∑
i

√
(∇xu)2

i + (∇yu)2
i + µ

2 ‖u− f‖
2
2 (7)

where f represents the original noisy image and u is the smooth image
after TV minimization. The key to the split Bregman method is that the
`1 and `2 portions of the energy in Equation (6) are decoupled.
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`1-Regularized Total Variation Minimization
For better visualizing the effect of the penalty coefficient, we rewrite
Equation (7) as follows:

minimize
u

τ
∑
i

√
(∇xu)2

i + (∇yu)2
i + 1

2‖u− f‖
2
2 (8)

We can vary τ to get different levels of smoothing. For large τ , we will
end up with very washed out images, and for small τ it will still be noisy
as shown in Figure 6. An example of illumination normalized image after
`1-regularized total variation minimization is shown in Figure 3, with
much smoother appearance. In the Pokerface, τ = 8.
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`1-Regularized Total Variation Minimization

Input τ = 1 τ = 2 τ= 4 τ= 8 τ= 16 τ= 32 τ= 64 τ = 128

Figure 6: Different levels of smoothing by varying τ in the total variation
minimization stage. This example is from YaleB+.
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`0-Regularized Sparse Approximation
We resort to the K-SVD dictionary learning method for obtaining the
overcomplete dictionary.

minimize
D,α

‖X−Dα‖2F subject to ‖αi‖0 < K1, ∀i (9)

where X, D and α are the data, the learned overcomplete dictionary and
the sparse approximation matrix respectively. Here ‖.‖0 is the `0
pseudo-norm measuring sparsity. The sparse approximations of the data
elements are allowed to have some maximum sparsity ‖α‖0 ≤ K1.
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`0-Regularized Sparse Approximation
With the learned dictionary D, any intermediate face y after TV
minimization step can be sparsely approximated by the elements of D
following:

αy = arg min
α

‖y−Dα‖ subject to ‖α‖0 < K2 (10)

which can be efficiently solved using any sparse coding algorithm such as
the orthogonal matching pursuit (OMP) [Pati et al., 1993]. The sparse
approximation of y is therefore ŷ = Dαy.
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`0-Regularized Sparse Approximation

Dark Face  6.3825 SSR  13.5599 MSR  13.7711 ASR  7.1801 HOMO  9.9459 SSQ  10.1698 MSQ  11.8632 DCT  13.885

WA  11.13 WD  13.5515 IS  10.5418 AS  10.0569 SF  12.4502 NLM  13.5724 ANL  13.9042

MAS  11.9891 GRF  9.0254 WEB  11.0102 MSW  11.7405 LSSF  8.8126 TT  13.7925 DOG  12.626 Pokerface 13.2715

RET  14.4993

Figure 7: Example from YaleB+ subject #1 showcasing various illumination
normalization algorithms. PSNR is also displayed for this particular image.
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Faithfulness: Fidelity Experiments (MPIE)

Dark Faces from MPIE Illumination Normalized Dark Faces from MPIE Illumination Normalized

Figure 8: Visual results of the Pokerface on 4 subjects of MPIE under all
illumination variations.
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Faithfulness: Fidelity Experiments (YaleB+)
Dark Faces from YaleB+ Illumination Normalized

Figure 9: Visual results of the Pokerface on 2 subjects of YaleB+ under all
illumination variations .
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Expressiveness: Face Verification Experiments (MPIE)
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Figure 10: ROC curves for our proposed Pokerface and other 22 competing
algorithms on MPIE. These 22 algorithms are split into four sub-figures, and in
each sub-figure, ROC curves for the original image performance and the
Pokerface performance are plotted for comparison.
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Figure 9. ROC curves for our proposed Pokerface and other 22 competing algorithms on MPIE. These 22 algorithms are split into four sub-
figures, and in each sub-figure, ROC curves for the original image performance and the Pokerface performance are plotted for comparison.

Table 1. Results including verification rate (VR) at 0.1% false accept rate (FAR), equal error rate (EER), and peak-signal-to-noise ratio
(PSNR) are tabulated for experiments on MPIE. VR/PSNR/overall rankings are also shown by RkVR, RkPSNR, and Rk∑ respectively.

∑

column is the sum of RkVR and RkPSNR, which leads to the overall ranking Rk∑.
Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑ Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑

Original 0.1457 (0.2017) — — — — — AS 0.2958 (0.2224) 15 12.1041 17 32 19
SSR 0.2633 (0.2070) 20 11.5426 20 40 22 SF 0.4118 (0.0749) 8 11.9702 18 26 15
MSR 0.2672 (0.2044) 19 11.4762 21 40 23 NLM 0.2914 (0.1885) 16 11.6009 19 35 21
ASR 0.4406 (0.1095) 5 8.6825 23 28 16 ANL 0.2999 (0.1585) 14 13.5821 9 23 12

HOMO 0.2674 (0.2185) 18 12.8675 12 30 17 MAS 0.2755 (0.2043) 17 14.0922 5 22 10
SSQ 0.4868 (0.0851) 3 12.2546 16 19 7 GRF 0.3763 (0.1551) 9 8.9773 22 31 18
MSQ 0.4300 (0.1157) 7 12.7599 14 21 9 WEB 0.3131 (0.1299) 12 13.3675 11 23 13
DCT 0.3547 (0.1270) 10 13.5237 10 20 8 MSW 0.3091 (0.1255) 13 14.3141 4 17 5
RET 0.4395 (0.1120) 6 14.0250 7 13 3 LSSF 0.2146 (0.2211) 23 14.8537 3 26 14
WA 0.2307 (0.3710) 22 12.7786 13 35 20 TT 0.5602 (0.0719) 1 12.6407 15 16 4
WD 0.4986 (0.0879) 2 13.9621 8 10 2 DOG 0.2364 (0.1852) 21 14.7781 2 23 11
IS 0.3363 (0.1443) 11 14.0754 6 17 6 Pokerface 0.4445 (0.1217) 4 14.9831 1 5 1
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Figure 10. ROC curves for our proposed Pokerface and other 22 competing algorithms on YaleB+. These 22 algorithms are split into
four sub-figures, and in each sub-figure, ROC curves for the original image performance and the Pokerface performance are plotted for
comparison.

Table 2. Results including verification rate (VR) at 0.1% false accept rate (FAR), equal error rate (EER), and peak-signal-to-noise ratio
(PSNR) are tabulated for experiments on YaleB+. VR/PSNR/overall rankings are also shown by RkVR, RkPSNR, and Rk∑ respectively.

∑

column is the sum of RkVR and RkPSNR, which leads to the overall ranking Rk∑.
Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑ Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑

Original 0.0750 (0.4808) — — — — — AS 0.1040 (0.4342) 14 11.6312 15 29 17
SSR 0.0755 (0.4319) 22 10.3763 20 42 23 SF 0.1136 (0.4519) 9 12.9689 5 14 4
MSR 0.0749 (0.4252) 23 10.3884 19 42 22 NLM 0.0766 (0.4207) 21 10.7308 18 39 21
ASR 0.1332 (0.2482) 4 6.4917 23 27 16 ANL 0.0862 (0.4069) 20 12.1193 13 33 18

HOMO 0.0906 (0.4434) 18 11.5867 16 34 19 MAS 0.1043 (0.4047) 13 12.9829 4 17 5
SSQ 0.1181 (0.3160) 6 10.1418 21 27 15 GRF 0.1024 (0.3423) 15 9.0207 22 37 20
MSQ 0.1173 (0.3497) 8 10.9452 17 25 13 WEB 0.1213 (0.3434) 5 12.1227 12 17 7
DCT 0.0973 (0.3374) 16 12.3461 9 25 11 MSW 0.1129 (0.3568) 10 12.2681 11 21 10
RET 0.1174 (0.3441) 7 12.3458 10 17 6 LSSF 0.0879 (0.4397) 19 12.7387 7 26 14
WA 0.1096 (0.4546) 11 12.1002 14 25 12 TT 0.1559 (0.3458) 2 13.2149 3 5 2
WD 0.1382 (0.2963) 3 12.7586 6 9 3 DOG 0.0961 (0.3718) 17 13.2827 2 19 8
IS 0.1047 (0.4117) 12 12.6833 8 20 9 Pokerface 0.1709 (0.3403) 1 13.9678 1 2 1

Figure 11: Results including verification rate (VR) at 0.1% false accept rate
(FAR), equal error rate (EER), and peak-signal-to-noise ratio (PSNR) are
tabulated for experiments on MPIE. VR/PSNR/overall rankings are also shown.∑

column is the sum of RankVR and RankPSNR.
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Figure 12: ROC curves for our proposed Pokerface and other 22 competing
algorithms on YaleB+. These 22 algorithms are split into four sub-figures, and
in each sub-figure, ROC curves for the original image performance and the
Pokerface performance are plotted for comparison.

c©F. Juefei-Xu September 10, 2015 35 / 44



Expressiveness: Face Verification Experiments (YaleB+)

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curves for MPIE Evaluation, Comparing with Methods 1−5

False Accept Rate

Ve
rifi

ca
tio

n 
Ra

te

 

 
Original
1.SSR
2.MSR
3.ASR
4.HOMO
5.SSQ
Proposed Pokerface

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curves for MPIE Evaluation, Comparing with Methods 6−10

False Accept Rate

Ve
rifi

ca
tio

n 
Ra

te

 

 
Original
6.MSQ
7.DCT
8.RET
9.WA
10.WD
Proposed Pokerface

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curves for MPIE Evaluation, Comparing with Methods 11−16

False Accept Rate

Ve
rifi

ca
tio

n 
Ra

te

 

 
Original
11.IS
12.AS
13.SF
14.NLM
15.ANL
16.MAS
Proposed Pokerface

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC Curves for MPIE Evaluation, Comparing with Methods 17−22

False Accept Rate

Ve
rifi

ca
tio

n 
Ra

te

 

 
Original
17.GRF
18.WEB
19.MSW
20.LSSF
21.TT
22.DOG
Proposed Pokerface

Figure 9. ROC curves for our proposed Pokerface and other 22 competing algorithms on MPIE. These 22 algorithms are split into four sub-
figures, and in each sub-figure, ROC curves for the original image performance and the Pokerface performance are plotted for comparison.

Table 1. Results including verification rate (VR) at 0.1% false accept rate (FAR), equal error rate (EER), and peak-signal-to-noise ratio
(PSNR) are tabulated for experiments on MPIE. VR/PSNR/overall rankings are also shown by RkVR, RkPSNR, and Rk∑ respectively.

∑

column is the sum of RkVR and RkPSNR, which leads to the overall ranking Rk∑.
Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑ Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑

Original 0.1457 (0.2017) — — — — — AS 0.2958 (0.2224) 15 12.1041 17 32 19
SSR 0.2633 (0.2070) 20 11.5426 20 40 22 SF 0.4118 (0.0749) 8 11.9702 18 26 15
MSR 0.2672 (0.2044) 19 11.4762 21 40 23 NLM 0.2914 (0.1885) 16 11.6009 19 35 21
ASR 0.4406 (0.1095) 5 8.6825 23 28 16 ANL 0.2999 (0.1585) 14 13.5821 9 23 12

HOMO 0.2674 (0.2185) 18 12.8675 12 30 17 MAS 0.2755 (0.2043) 17 14.0922 5 22 10
SSQ 0.4868 (0.0851) 3 12.2546 16 19 7 GRF 0.3763 (0.1551) 9 8.9773 22 31 18
MSQ 0.4300 (0.1157) 7 12.7599 14 21 9 WEB 0.3131 (0.1299) 12 13.3675 11 23 13
DCT 0.3547 (0.1270) 10 13.5237 10 20 8 MSW 0.3091 (0.1255) 13 14.3141 4 17 5
RET 0.4395 (0.1120) 6 14.0250 7 13 3 LSSF 0.2146 (0.2211) 23 14.8537 3 26 14
WA 0.2307 (0.3710) 22 12.7786 13 35 20 TT 0.5602 (0.0719) 1 12.6407 15 16 4
WD 0.4986 (0.0879) 2 13.9621 8 10 2 DOG 0.2364 (0.1852) 21 14.7781 2 23 11
IS 0.3363 (0.1443) 11 14.0754 6 17 6 Pokerface 0.4445 (0.1217) 4 14.9831 1 5 1
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Figure 10. ROC curves for our proposed Pokerface and other 22 competing algorithms on YaleB+. These 22 algorithms are split into
four sub-figures, and in each sub-figure, ROC curves for the original image performance and the Pokerface performance are plotted for
comparison.

Table 2. Results including verification rate (VR) at 0.1% false accept rate (FAR), equal error rate (EER), and peak-signal-to-noise ratio
(PSNR) are tabulated for experiments on YaleB+. VR/PSNR/overall rankings are also shown by RkVR, RkPSNR, and Rk∑ respectively.

∑

column is the sum of RkVR and RkPSNR, which leads to the overall ranking Rk∑.
Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑ Method VR (EER) RkVR PSNR RkPSNR

∑
Rk∑

Original 0.0750 (0.4808) — — — — — AS 0.1040 (0.4342) 14 11.6312 15 29 17
SSR 0.0755 (0.4319) 22 10.3763 20 42 23 SF 0.1136 (0.4519) 9 12.9689 5 14 4
MSR 0.0749 (0.4252) 23 10.3884 19 42 22 NLM 0.0766 (0.4207) 21 10.7308 18 39 21
ASR 0.1332 (0.2482) 4 6.4917 23 27 16 ANL 0.0862 (0.4069) 20 12.1193 13 33 18

HOMO 0.0906 (0.4434) 18 11.5867 16 34 19 MAS 0.1043 (0.4047) 13 12.9829 4 17 5
SSQ 0.1181 (0.3160) 6 10.1418 21 27 15 GRF 0.1024 (0.3423) 15 9.0207 22 37 20
MSQ 0.1173 (0.3497) 8 10.9452 17 25 13 WEB 0.1213 (0.3434) 5 12.1227 12 17 7
DCT 0.0973 (0.3374) 16 12.3461 9 25 11 MSW 0.1129 (0.3568) 10 12.2681 11 21 10
RET 0.1174 (0.3441) 7 12.3458 10 17 6 LSSF 0.0879 (0.4397) 19 12.7387 7 26 14
WA 0.1096 (0.4546) 11 12.1002 14 25 12 TT 0.1559 (0.3458) 2 13.2149 3 5 2
WD 0.1382 (0.2963) 3 12.7586 6 9 3 DOG 0.0961 (0.3718) 17 13.2827 2 19 8
IS 0.1047 (0.4117) 12 12.6833 8 20 9 Pokerface 0.1709 (0.3403) 1 13.9678 1 2 1

Figure 13: Results including verification rate (VR) at 0.1% false accept rate
(FAR), equal error rate (EER), and peak-signal-to-noise ratio (PSNR) are
tabulated for experiments on YaleB+. VR/PSNR/overall rankings are also
shown.

∑
column is the sum of RankVR and RankPSNR.
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Conclusions

• We present a practical and effective method for extreme face
illumination normalization.

• Pokerface exhibits very high level of faithfulness and expressiveness
at the same time, which is outstanding among many competing
algorithms.

• Intuitive formulation: it aims at maximizing the minimum gap
between adjacently-valued pixels while keeping the partial ordering
of the pixels in the dark face.

• We reformulate this optimization as a feasibility search problem
which is efficiently solved by LP. Next, a smoothing step involving
total variation minimization and sparse approximation is exercised
for improved enhancement quality.

• The effectiveness of the Pokerface in terms of both faithfulness and
expressiveness is confirmed.
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Thank you! Questions?
felixu@cmu.edu
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Appendix
More related work can be found in
[Juefei-Xu and Savvides, 2015c, Juefei-Xu et al., 2015a, Juefei-Xu et al., 2014b, Juefei-Xu and Savvides, 2015e,
Juefei-Xu and Savvides, 2015f, Juefei-Xu and Savvides, 2015a, Juefei-Xu and Savvides, 2015d, Zehngut et al., 2015,
Juefei-Xu et al., 2015b, Juefei-Xu et al., 2015c, Seshadri et al., 2015, Venugopalan et al., 2015, Savvides and Juefei-Xu, 2013,
Juefei-Xu and Savvides, 2015b, Juefei-Xu and Savvides, 2015g, Juefei-Xu et al., 2014a, Juefei-Xu and Savvides, 2014,
Juefei-Xu and Savvides, 2013b, Juefei-Xu and Savvides, 2013a, Juefei-Xu et al., 2012, Juefei-Xu and Savvides, 2012,
Juefei-Xu et al., 2011b, Juefei-Xu and Savvides, 2011, Juefei-Xu et al., 2011a, Juefei-Xu et al., 2010]
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