AVA: Adversarial Vignetting Attack against Visual Recognition
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Abstract

Vignetting is an inherit imaging phenomenon
within almost all optical systems, showing as a ra-
dial intensity darkening toward the corners of an
image. Since it is a common effect for the photog-
raphy and usually appears as a slight intensity vari-
ation, people usually regard it as a part of a photo
and would not even want to post-process it. Due
to this natural advantage, in this work, we study
the vignetting from a new viewpoint, i.e., adver-
sarial vignetting attack (AVA), which aims to em-
bed intentionally misleading information into the
vignetting and produce a natural adversarial ex-
ample without noise patterns. This example can
fool the state-of-the-art deep convolutional neural
networks (CNNs) but is imperceptible to human.
To this end, we first propose the radial-isotropic
adversarial vignetting attack (RI-AVA) based on
the physical model of vignetting, where the phys-
ical parameters (e.g., illumination factor and fo-
cal length) are tuned through the guidance of tar-
get CNN models. To achieve higher transferability
across different CNNs, we further propose radial-
anisotropic adversarial vignetting attack (RA-AVA)
by allowing the effective regions of vignetting to
be radial-anisotropic and shape-free. Moreover, we
propose the geometry-aware level-set optimization
method to solve the adversarial vignetting regions
and physical parameters jointly. We validate the
proposed methods on three popular datasets, i.e.,
DEV, CIFARI10, and Tiny ImageNet, by attack-
ing four CNNs, e.g., ResNet50, EfficientNet-BO,
DenseNet121, and MobileNet-V2, demonstrating
the advantages of our methods over baseline meth-
ods on both transferability and image quality.

1 Introduction

In photography, image vignetting is a common effect as a re-
sult of camera settings or lens limitations. It shows up as a
gradually darkened transparent ring-shape mask towards the
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(b) Adversarial Vignetting Examples

Figure 1: (a) shows three real vignetting images captured by cam-
eras. (b) shows the adversarial examples produced by our adversar-
ial vignetting attack (AVA), fooling the SOTA CNN ResNet50 with
imperceptible property due to the realistic vignetting effects.

image border with continuous reduction of the image bright-
ness or saturation [Gonzalez et al., 2004]. Vignetting often
naturally occurs during the photo taking process. As cate-
gorized by [Ray, 2002], there are the following three main
causes of vignetting for digital imaging: (1) mechanical vi-
gnetting, (2) optical vignetting, and (3) natural vignetting.
Both mechanical vignetting and optical vignetting are some-
how caused by the blockage of light. For example, the me-
chanical vignetting is caused by light emanated from off-axis
scene being partially blocked by external objects such as lens
hoods, and the optical vignetting is usually caused by the mul-
tiple element lens setting where the effective lens opening for
off-axis incident light can be reduced. On the other hand,
naturally vignetting is not due to light blockage, but rather
by the law of illumination falloff where the light falloff is
proportional to the 4-th power of the cosine of the angle at
which the light particles hit the digital sensor. Sometimes, vi-
gnetting can also be applied on the digital image as an artistic
post-processing step to draw people’s attention to the center
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portion of the photograph as depicted in Fig. 1(a).

Therefore, image vignetting can be capitalized to ideally
hide adversarial attack information in a stealthy way for its
ubiquity and naturalness in digital imaging. In this work,
we propose a novel and stealthy attack method called the
adversarial vignetting attack (AVA) that aims at embedding
intentionally misleading information into the vignetting and
producing a natural adversarial example without noise pat-
terns, as depicted in Fig. 1(b). By first mathematically and
physically model the image vignetting effect, we have pro-
posed the radial-isotropic adversarial vignetting attack (RI-
AVA) and the physical parameters such as the illumination
factors and the focal length are tuned through the guidance of
the target CNN models under attack. Next, by further allow-
ing the effective regions of vignetting to be radial-anisotropic
and shape-free, our proposed radial-anisotropic adversarial
vignetting attack (RA-AVA) can achieve much higher trans-
ferability across different CNN models. Moreover, we have
proposed the level-set-based optimization method, that is
geometry-aware, to solve the adversarial vignetting regions
and physical parameters jointly.

Through extensive experiments, we have validated the
effectiveness of the proposed methods on three popular
datasets, i.e., DEV [Google, 2017], CIFARI10 [Krizhevsky et
al., 2009], and Tiny ImageNet [Stanford, 2017], by attacking
four CNNs, e.g., ResNet50 [He er al., 2016], EfficientNet-
BO [Tan and Le, 2019], DenseNet121 [Huang et al., 20171,
and MobileNet-V2 [Sandler ef al., 2018]. We have suc-
cessfully demonstrated the advantages of our methods over
strong baseline methods especially on transerferbility and im-
age quality. To the best of our knowledge, this is the very first
attempt to formulate stealthy adversarial attack by means of
image vignetting and showcase both the feasibility and the
effectiveness through extensive experiments.

2 Related Work

Adversarial noise attacks. Adversarial noise attacks aim to
fool DNNs by adding imperceptible perturbations to the im-
ages. One of the most popular attack methods, i.e., fast gradi-
ent sign method (FGSM) [Goodfellow er al., 2014], involves
only one back propagation step in the process of calculating
the gradient of cost function, enabling simple and fast adver-
sarial example generation. [Kurakin ez al., 2016] proposes an
improved version of FGSM, known as basic iteration method
(BIM), which heuristically search for examples that are most
likely to fool the classifier. [Dong e al., 2018] proposes a
broad class of momentum-based iterative algorithms to boost
adversarial attacks. By integrating the momentum term into
the iterative process for attacks, it can stabilize update di-
rections and escape from poor local maxima during the it-
erations. [Dong ef al., 2019] further proposes a translation-
invariant attack method to generate more transferable adver-
sarial examples against the defense models. Adversarial noise
attack will generate patterns that do not exist in reality, and
our method is an early method of applying patterns that may
be generated in natural optical systems to attacks.

Other adversarial attacks. In addition to traditional ad-
versarial noise attacks, there are some methods that focus on

sparse or real-life patterns. [Croce and Hein, 2019] proposes
a new attack method to generate adversarial examples aiming
at minimizing the [y-distance to the original image. It allows
pixels to change only in region of high variation and avoiding
changes along axis-aligned edges, resulting in almost non-
perceivable adversarial examples. [Wong er al., 2019] pro-
poses a new threat model for adversarial attacks based on the
Wasserstein distance. The resulting algorithm can success-
fully attack image classification models, bringing traditional
CIFAR10 models down to 3% accuracy within a Wasserstein
ball with radius 0.1. [Bhattad er al., 2019] introduces “un-
restricted” perturbations that manipulate semantically mean-
ingful image-based visual descriptors (e.g., color and texture)
to generate effective and photorealistic adversarial examples.
[Guo et al., 2020b] proposes an adversarial attack method that
can generate visually natural motion-blurred adversarial ex-
amples. Along similar lines, non-additive noise based adver-
sarial attacks that focus on producing realistic degradation-
like adversarial patterns have emerged in several recent stud-
ies, such as adversarial rain [Zhai et al., 2020] and haze
[Gao et al., 2021], adversarial exposure for medical analy-
sis [Cheng er al., 2020b] and co-saliency detection problems
[Gao er al., 20201, adversarial bias field in medial imaging
[Tian er al., 20201, as well as adversarial denoising [Cheng
et al., 2020a] and face morphing [Wang ez al., 2020]. These
methods apply patterns that may be produced in reality such
as color and texture to attack, but ignore the patterns that are
generated naturally in the optical systems, which are also vi-
tally important.

Vignetting correction methods. Research into vignetting
correction has a long history. The Kang-Weiss model [Kang
and Weiss, 2000] is established to simulate the vignetting ef-
fect. It proves that it is possible to calibrate a camera using
just a flat, textureless Lambertian surface and constant illumi-
nation. [Zheng er al., 2008] proposes a method for robustly
determining the vignetting function in order to remove the
vignetting given only a single image. [Goldman, 2010] fur-
ther proposes a method to remove the vignetting from the im-
ages without resolving ambiguities or the previously known
scale and gamma ambiguities. These works on correcting
the vignetting effect provides a basis for us to model the vi-
gnetting effect. Inspired by these work, we will capitalize the
vignetting effect as a means of an adversarial attack.

3 Adbversarial Vignetting Attack (AVA)

Vignetting effect is related to numerous factors, e.g., angle-
variant light across camera sensor, intrinsic lens character-
istics, and physical occlusions. There are several works
studying how to model the vignetting including empirical-
based [Goldman, 2010; Yu, 2004] and physical-based meth-
ods [Asada et al., 1996; Kang and Weiss, 2000]. In partic-
ular, Kang and Weiss [Kang and Weiss, 2000] proposes a
physical-based method that models vignetting via physically
meaningful parameters (e.g., off-axis illumination, light path
obstruction, tilt effects), allowing better understanding of the
influence from real-world environments (e.g., camera setups
or physical occlusion) to the final results. In this section, we
start from the physical model of vignetting effects [Kang and



Weiss, 2000] and propose two adversarial vignetting attacks
based on this model with an level-set-based optimization.

3.1 Physical Model of Vignetting

Given a clean image I, we aim to simulate the vignetting im-
age' via I = I®V where V is a matrix having the same
size with I and represents the vignetting effects, and ©® de-
notes the pixel-wise multiplication. We model the vignetting
from three aspects, i.e., off-axis illumination factor A, geo-
metric factor G, and a tilt factor T [Kang and Weiss, 2000].
All three factors are pixel-wise and have the same size with
the original image. Then, the vignetting effects can be also
represented as

V=AOGOT. (D

Intuitively, A describes the phenomenon of the illumina-
tion in the image that is darkened with distance away from
the image center [Kang and Weiss, 20001, defined as

Am @
(1+(3)?)
where f is the effective focal length of the camera, and R is
a fixed matrix and denotes the distance of each pixel to the
principal point, i.e., the image center with the coordinate as
(u,v) = (0,0) if the lens distortion does not exist.
The matrix G represents the vignetting caused by the off-
axis angle projection from the scene to the image plane [Tsai,
19871, and is approximated by

G =1-aR, 3)

where « is a scalar deciding the geometry vignetting degree.

The matrix T defines the effects of camera tilting to image

plane and the -th element is formulated as

T[] = COST(l + ta%(ui sin x — v; cos X)2), “4)
where x and 7 are tilt-related parameters determining the
camera pose w.r.t. a scene/object. Please find more details
in [Kang and Weiss, 2000].

With this physical model, we aim to study the effects of
vignetting from the viewpoint of adversarial attack, e.g., how
to actively tune the vignetting-related parameters, i.e., f, a,
T, and Y, to let the simulated vignetting images to fool the
state-of-the-art CNNs easily? To this end, we represent the
vignetting process as a simple function, i.e.,

I=vig(I,P) =10V, ®)
where P = {f~1 a,7,x}. Then, we propose the radial-
isotropic adversarial vignetting attack (RI-AVA).

3.2 Radial-Isotropic AVA

Given a clean image I and a pre-trained CNN ¢, we aim to
tune the P = [f~!, , 7, x| under a norm ball constraint for
each parameter.

argmax J((vig(L, P),y) + As[fl2 = Aalale,
subject to Yp € P, |plp < €p, (6)

lThmughout the paper, the term ‘vignetting image’ refers to a photographic image that
exhibits the vignetting effect to some degree.

where the first term J(-) is the image classification loss un-
der the supervision of the annotation label y, the second and
third terms encourage the focal length to be larger and ge-
ometry coefficient o to be smaller. As a result, the clean
image I would not be changed significantly. Besides, ¢, de-
notes the ball bound under L, for the parameter p. Here, we
use the infinite norm. We can optimize the objective function
by gradient descent-based methods, that is, we calculate the
gradient of the loss function with respect to all parameters
in P and update them to realize the gradient-based attacks
like existing adversarial noise attacks [Kurakin er al., 2017,
Guo et al., 2020b].

Since this method equally tunes the pixels on the same ra-
dius to the image center, we name it as radial-isotropic ad-
versarial vignetting attack (RI-AVA). Nevertheless, by tun-
ing only four scalar physical-related parameters to realize
attack, this method can study the robustness of CNN to re-
alistic vignetting effects but it is hard to realize intentional
attacks with high attack success rate and high transferability
across different CNNs. To fill this gap, we further propose the
radial-anisotropic adversarial vignetting attack (RA-AVA) by
extending the geometry vignetting G, allowing the each ele-
ment of G to be independently tuned.

3.3 Radial-Anisotropic AVA

To enable more flexible vignetting effects, we allow G to be
tuned independently in an element-wise way and redefine the
objective function in Eq. (6) to jointly optimize G and P.
Specifically, for the matrix G, we split it into two parts with
a closed curve C centered at the principal point. On the one
hand, we desire the region of G inside C (i.e., {2;;) to be sim-
ilar with the physical function defined by Eq. (3), making the
simulated image look naturally. In contrast, we also want all
elements of G to be flexibly tuned according to the adver-
sarial classification loss, leading to high attack success rate.
In particular, the vignetting effects let pixels in the outside
region darker than the ones in the €);,. Hence, embedding
adversarial information into this region is less risky to be per-
ceived. Overall, we define a new objective function to tune
G, C, and P jointly

arg max J(¢(vig(L, P),y) = Ag > I(Gi] = Goli])]2
v 1€ Q%
+ Aflfl2 — Aalal2, subject to Vp e P, |pl, <€, (7)

where Gy = 1 — aR, and the region €, is determined by
the curve C. Note that, we tune C along its inward normal
direction to let shape and area of {2, be changed according
to the adversarial classification loss (i.e., J(+)). For example,
when the €2, becomes larger and then less pixels (i.e., $2i,)
are constrained by the second term of Eq. (7), we have more
flexibility to tune the pixels in the image to reach high attack
success rate. We can solve Eq. (7) by regarding it as a curve
evolution problem [Kass e al., 1988] since the curve C is an
optimization variable. Nevertheless, this method can hardly
handle topological changes of the moving front, such as split-
ting and merging of C [Kimia ef al., 1992]. Inspired by the
works [Guo er al., 2018] for curve optimization, we propose
to regard the G as the level-set function of the curve and solve
Eq. (7) via our geometry-aware level-set optimization.
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Figure 3: Influences of hyper-parameters. (a) and (b) shows success
rate w.r.t. different upper bounds of f (i.e., €7) and « (i.e., €o) under
the RI-AVA method. We also show the success rate w.r.t. different
Ag and Ay in (c) and (d), respectively, under the RA-AVA method.

3.4 Geometry-aware Level-Set Optimization

To optimize Eq. (7), we first initialize the geometry vi-
gnetting, i.e., G = Gy = 1 — oR, which is a distance-
related matrix and we reformulate it as a level-set function
g(ui,v;) = Gli] = 1 — ay/u? + v2. Intuitively, the function
g(+) takes the coordinates of a position on the image plane as
inputs and outputs a value that decreases as the coordinates
become larger, leading to a 3D surface. With such a func-
tion, we can define the curve C as the z-level-set of g(), i.e.,
C = {(u4,v;)|z = g(ui,v;)}, that is, C is the cross section
of the 3D surface at level z. Then, we can define the region
inside the curve as Qi = {(us,v;)|z < g(ui,v;)}, which
can be reformulated it as the function of g by the Heaviside
function (i.e., H(+)) [Chan and Vese, 2001], that is, we have
Qin = {(ug,v;)H(g(us,v;)) > 2z} or H(G). Finally, we can
reformulate Eq. (7) as

argmax J(¢(vig(T, P),y) = Agl|(G — Go) © H(G)]I3

+ A¢|fl2 — Aalal2, subject to Vp € P, |pl, <€, (8)

Since the Heaviside function is differentiable we can opti-
mize the objective function via gradient descent. Compared
with Eq. (7), the proposed new formulation only contains two
terms that should be optimized, i.e., G and P, making the
optimization more easier. In practice, we can calculate the
gradient of G and P w.r.t. to the objective function and use

P = {f717a’T’X}

Figure 2: (a) shows the
whole process of RA-
AVA. (b) shows the 3D
surface of the initialized
G. The red line is the
curve splitting the image
to 2 parts, i.e., i, and
Qout~

(a):

the signed gradient descent to optimize G and P as is done
in [Kurakin et al., 2017].

3.5 Implementation Details

We show the whole process in Fig. 2(a). Specifically, given a
clean image I and a DNN ¢(-), we summarize the workflow
of our attacking algorithm in the following steps: @ Initialize
the parameters P = {f~ !, a, 7, x} = {1,0,0,0}, the geom-
etry vignetting matrix G as 1 —«aR, and the distance matrix R
via R[i] = \/u? + v7. @ Calculate the illumination-related
matrix A via Eq. (2), and the camera tilting-related matrix T
via Eq (4). ® At the ¢-th iteration, calculate the gradient of
G, P; with respect to the objective function Eq. (8) and ob-
tain Vg, and {V,,|p; € P;}. @® Update Vg, and P; with
their own step sizes. ® Update ¢ = ¢ + 1 and go to the step
three for further optimization until it reaches the maximum it-
eration or vig(I, P) fools the DNN. In the experimental parts,
we set our hyper-parameters as follows: we set the stepsize of
fya, 7, x and Vg, as 0.0125, 0.0125, 0.01, 0.01 and 0.0125,
respectively. We set the number of iterations to be 40 and z
of the level-set method to be 1.0. We set p to be oo, and set
the e of =1, @, 7, and  as 0.5, 0.5, 7/6, and 7/6. In addi-
tion, we set Ay, Ay and ), all to be 1. In Section 4, we will
carry out experiments to evaluate the effect of different hyper-
parameters. And we do not choose the hyper-parameters for
the highest success rate when compared with baseline attacks,
but rather set the parameters that can balance the high success
rate and good image quality.

4 Experimental Results

Here, we conduct comprehensive experiments on three pop-
ular datasets to evaluate the effectiveness of our method. We
compare our method with some popular baselines including
adversarial noise attack methods and other methods. Finally,
we conduct experiments to showcase that our method can ef-
fectively defend against vignetting corrections.

Datasets. We carry out our experiments on three popular
datasets, i.e., DEV [Google, 2017], CIFAR10 [Krizhevsky et
al., 2009], and Tiny ImageNet [Stanford, 2017].

Models. In order to show the effect of our attack method
on different neural network models, we choose four pop-
ular models to attack, i.e., ResNet50 [He er al., 2016],
EfficientNet-BO [Tan and Le, 2019], DenseNet121 [Huang et
al.,2017], and MobileNet-V2 [Sandler et al., 2018]. We train
these models on the CIFAR10 and Tiny ImageNet dataset.
For DEV dataset, we use the pretrained models.



| Crafted from ResNet50 | EfficientNet | DenseNet | MobileNet
;“ﬁelfr?ées Succ Rate BRISQUE NIQE | Succ Rate BRISQUE NIQE | Succ Rate BRISQUE NIQE | Succ Rate BRISQUE NIQE
MIFGSM 99.78 2093 3942 | 99.89 19.12 3938 | 100.00 2117 40.19 | 100.00 2279 42.19
CW 100.00 1749 4836 | 100.00 17.81 4836 | 100.00 17.48 4853 | 100.00 1733 48.51
TIMIFGSM | 96.23 1834 4586 | 98.56 18.59  46.15| 98.34 1848  45.60 | 98.94 18.55  45.99
> | Wasserstein | 1421 2091 5163 | 3278 2044 5130 | 16.50 2067 5179 | 13.87 2002 51.58
A | cAdv 81.59 1844 5148 | 88.27 1845 5138 | 77.85 1843 5146 | 7873 1844 5136
RI-AVA 9.36 1978 4833 | 1495 2006 4824 | 13.07 20.10  48.17| 20.68 2032 48.12
RA-AVA 96.77 2133 4692 | 9834 2281 47.02| 99.22 20.89  46.54 | 99.18 2120  46.66
MIFGSM 80.78 4186 4204 | 96.67 4190 4253 | 79.03 4140 4197 | 97.87 4156 4214
CW 100.00 4143 4136 | 100.00  41.66  41.06 | 10000 4134 4142 | 10000 4146  41.01
o | TIMIFGSM |  38.80 41.66  40.64 | 38.64 4154 4059 | 34.82 4148 4062 | 59.77 4144 40.67
& | Wasserstein | 80.27 4545 4447 | 7473 4481 4409 | 80.62 4326 4205 | 6643 4345  42.87
£ | cAdv 12.78 4142 4078 | 21.24 4155 4078 | 11.88 4132 4084 | 17.28 4140 4084
O [RI-AVA 6.17 4054 4028 | 9.53 3990 4034 | 673 7057 4028 | 12.52 3973 40.36
RA-AVA 35.95 3356  38.05| 74.15 2829 3539 | 45.80 3148 3739 | 84.66 2482 35.63
MIFGSM 91.16 34.58 5599 | 97.09 3442 56.13| 96.65 3467 5624 | 99.64 3456 56.20
5 | CW 100.00 34.94 5624 | 100.00 3494 5618 | 99.98 3501 56.28 | 100.00 3504 56.23
Z | TIMIFGSM | 72.83 3501 5626 | 73.96 3508 5630 | 8573 3494 5634 | 92.09 3492 56.28
| Wasserstein | 73.75 3237 55.65| 77.02 33.06 5581 | 7047 3230 55.62| 62.83 3359  55.88
E | cAdv 34.18 3461 5651 | 50.65 3460 5636 | 41.94 3462 5658 | 45.30 3465  56.53
2z [RI-AVA 21.56 3406 5553 | 25.54 3422 5576 | 22.18 3397 5560 | 33.77 3399 5587
£ | RA-AVA 69.44 2933 5198 | 90.23 2896 5144 | 7698 2895 5215 | 96.92 28.87 5226

Table 1: Comparison results on 3 datasets with 5 attack baselines and our methods. It contains the success rates (%) of whitebox adversarial
attack on three normally trained models: ResNet50, EfficientNet-b0, DenseNet121 and MobileNet-v2. The 1st column displays the whitebox
attack results. The last two columns show the BRISQUE and NIQE score.
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Flgure 4: Visualization results of different ball bound for f and a.

Metrics. We choose attack success rate and image quality
to evaluate the effectiveness of our method. The image qual-
ity measurement metrics are BRISQUE [Mittal er al., 2012a]
and NIQE [Mittal ef al., 2012b]. BRISQUE and NIQE are
two non-reference image quality assessment methods. A high
score for BRISQUE or NIQE indicates poor image quality.

Baseline methods. We compare our method with five
SOTA attack baselines, i.e., momentum iterative fast gradi-
ent sign method (MIFGSM) [Dong et al., 2018], Carlini &
Wagner L2 method (C&W(,) [Carlini and Wagner, 20171,
translation-invariant momentum iterative fast gradient sign
method (TIMIFGSM) [Dong er al., 2019], Wasserstein attack
via projected sinkhorn iterates (Wasserstein) [Wong er al.,

2019] and colorization attack (cAdv) [Bhattad et al., 2019].

Analysis of physical parameters. Focal length and ge-
ometric factor are the two important parameters for the vi-
gnetting effect. We evaluate the influence of the two physical
parameters by setting different norm ball constraint for f~1,
a via Eq (6). According to the result in Fig. 3(a) and (b), we
observe that: @ Given different ball bound to f and «, the
success rate of attack will be different. @ With the ball bound
of f growing, the success rate decreases. But as ball bound of
« increases, the success rate increases. ® From the visualiza-
tion results in Fig. 4, with the value of f decreasing and the
value of « increasing, the vignetting effect becomes more ob-
vious. Therefore, we can conclude that a stronger vignetting
effect can increase the attack success rate.

Analysis of different objective functions. We evaluate
the effect of different energy terms by setting different coef-
ficient values of energy terms, i.e., Ay, Ay and A\,. From the
result in Fig. 3(c)(d), we can see that: @ With the increasing
of Ay and Ay, the success rate of attack decreases accordingly.
® The restriction on the energy item will reduce the success
rate, indicating that the energy item has certain constraints on
the attack. In addition, we find that the change of A\, almost
does not affect the attack success rate, which shows that this
energy item has minimal constraints on the attack.

Comparison with baseline attacks. We evaluate the ef-
fectiveness of our attack with the baseline. Table 1 shows
the quantitative results about the attack success rates and the
image quality. We observe that for every dataset, RA-AVA
reaches higher success rate than RI-AVA, indicating that tun-
able vignetting regions can greatly improve the success rate
of attack. Compared with the noise-based adversarial attack,
we found that our attack achieved lower success rate than
MIFGSM, CW and TIMIFGSM attack. This is in line with



MIFGSM

Figure 5: Adversarial examples generated with different methods. The top right corner shows the predictive label index and the ‘red” numbers
presents the attack misleads the DNN successfully. RI-AVA, RA-AVA, and cAdv are non-noise-based adversarial attack.

| Crafted from | ResNet50 | EfficientNet | DenseNet | MobileNet
Attacked model
‘ & Metrics EffNet DenNet MobNet BRISQUE NIQE | ResNet DenNet MobNet BRISQUE NIQE | ResNet EffNet MobNet BRISQUE NIQE | ResNet EffNet DenNet BRISQUE NIQE
MIFGSM 1329 1650 1281 2093 3942 1367 1595 31.26 19.12 3938 | 11.30 9.75 11.40 21.17  40.19| 797 21.15 10.08 2279 4219
cw 0.55 078 0.12 17.49 4836 032 1.11 2.00 17.81 4836 0.11 033 0.12 1748 4853 | 000 033 022 1733 4851
TIMIFGSM 554 9.08 8.81 1834 4586 7.64 1074 1575 1859  46.15| 571 6.3 7.40 18.48 4560 | 3.12 9.08 742 1855 4599
5 Wasserstein 0.78 1.99 1.53 2091 51.63 | 0.65 1.11 1.65 20.44 51.30| 0.86 0.66 1.06 20.67 51.79| 032  0.33 0.44 20.02 51.58
A | cAdv 2835 3433 3231 18.44 5148 | 3193 36.61 45.77 1845  51.38 | 22.39 2337 27.03 18.43 5146 25.83 29.24 30.79 1844  51.36
RI-AVA 332 4.10 4.11 19.78 48.33 | 3.88 5.65 5.76 20.06 4824 441 4.54 5.17 20.10 4817 5.17 7.31 6.98 2032 48.12
RA-AVA 20.27 21.59 23.97 21.33 4692 | 17.65 2093 2891 22.81 47.02 | 20.02 22.04 2338 20.89 46.54 | 1636 2248 18.16 2120  46.66
MIFGSM 14.08 13.09 12.46 41.86  42.04| 1026  9.02 17.46 4190 4253 | 1349 1340 11.74 4140 41.97| 446 9.24 4.23 4156  42.14
CcwW 5.01 2.75 5.76 41.43 41.36 | 1.04 1.11 3.96 41.66  41.06 | 2.51 4.78 5.19 41.34  4142| 054 1.07 0.43 4146  41.01
o | TIMIFGSM 547 5.63 5.79 41.66  40.64 | 3.92 3.82 7.13 41.54  40.59 | 4.61 4.61 4.91 41.48 40.62 | 2.24  4.05 221 4144  40.67
~ | Wasserstein 8.25 2.65 5.82 45.45 4447 | 0.86 0.71 2.55 44.81 44.09 | 2.34 8.10 5.03 4326 42.05| 0.52 1.25 0.35 43.45 42.87
é cAdv 1092 9.16 13.47 41.42 40.78 | 11.54 10.98 17.34 41.55 40.78 | 10.35 10.87 13.27 41.32 40.84 | 9.28 1091 827 4140  40.84
O [ RI-AVA 2.61 2.62 2.18 40.54  40.28 | 2.94 2.93 2.92 39.90 40.34| 2.96 2.56 2.26 40.57 40.28 | 2.73 3.28 2.87 39.73 40.36
RA-AVA 1821 19.18 15.33 33.56 38.05| 2542 2655 3043 28.29 35.39| 21.67 2133 17.96 31.48 37.39| 19.26 26.66 19.31 24.82 35.63
MIFGSM 18.71 22.81 17.19 34.58 5599 | 13.37 1548 23.30 34.42 56.13| 17.74 1843 15.73 34.67 56.24| 5.10 9.61 5.40 34.56 56.20
2 |CW 5.24 4.90 5.87 34.94 56.24 | 2.07 2.07 5.83 34.94 56.18 | 2.48 3.30 3.83 35.01 56.28 | 045 0.90 0.38 35.04 56.23
% TIMIFGSM 1044 15.06 11.76 35.01 56.26 | 7.66 9.89 14.88 35.08 56.30| 10.34 1022 10.99 34.94 56.34 | 433 6.45 4.97 34.92 56.28
20| Wasserstein 5.81 497 7.75 32.37 55.65| 2.13 2.37 5.99 33.06 55.81| 294 3.84 522 32.30 55.62| 070 0.92 0.63 33.59 55.88
E | cAdv 28.24 29.53 | 34.57 34.61 56.51| 3140 3293 4237 34.60 56.36 | 27.04 28.19 = 34.51 34.62 56.58 | 25.13 28.12 26.31 34.65 56.53
Z' | RI-AVA 7.02 8.10 6.98 34.06 5553 6.63 6.78 8.87 3422 55.76 | 7.87 7.16 6.44 33.97 55.60] 6.28 8.44 5.85 33.99 55.87
E | RA-AVA 3045 3242 29.72 29.33 51.98| 27.41 2820 37.61 28.96 51.44] 2949 2998 29.53 28.95 52.15| 19.56 25.68 19.82 28.87 52.26

Table 2: Adversarial comparison results on three datasets with five attack baselines and our methods. It contains the success rates (%)
of transfer adversarial attack on three normally trained models: ResNet50 (ResNet), EfficientNet-b0 (EffNet), DenseNet121 (DenNet), and
MobileNet-v2 (MobNet). The first three columns display the transfer attack results, where we use red, yellow, and blue to mark the first,
second, and third highest success rate. And the last two columns show the BRISQUE score and NIQE score.

our expectation since the image vignetting has more con-
straints on image perturbation than adding arbitrary noises.
This is also why our method (RA-AVA) could have better im-
age quality than the noise-based attack. We also noticed that
on some models and datasets (e.g., DEV), RA-AVA could still
achieve competitive results in terms of attack success rate
while the image quality is better. Compared with the non-
noise based attack, our method is better than cAdv signifi-
cantly. Furthermore, we also find that our method can achieve
much better transferability, which will be introduced later.

In Fig. 5, we have showcased some examples generated by
baselines and our attack methods. The first column shows the
original images while the following columns list the corre-
sponding adversarial examples. It is clear that our method
could generate high-quality adversarial examples that are
smooth and realistic. However, we could find obvious noises
in the examples generated by the adversarial noise attack
methods, which are difficult to appear in the real world. For
other non-noise attack methods, e.g., cAdv, they allow pat-
terns that may appear in the real world but the change between
the original and the generated image is very perceptible. Our

method does not change the image too much while maintain-
ing the realism in optical system for the vignetting effects.

Comparison on transferability. We then evaluate the
transferability of different attacks. Table 2 shows the quan-
titative transfer attack results of our methods and the baseline
methods. In transfer attack, one attacks the target DNN with
the adversarial examples generated from other models. As
we can see, in most cases, our method achieves much higher
transfer success rate than others while the image quality is
also higher. For example, the attack examples crafted from
ResNet50 on DEV dataset achieves 37.21%, 40.75%, and
40.89% transfer success rate on EfficientNet, DenseNet, and
MobileNet, with the lowest values of BRISQUE and NIQE,
i.e., 11 and 37.04.

‘ResNetSO EfficientNet DenseNet MobileNet

original 66.06 57.83 65.33 49.40
RA-AVA 19.72 4.47 14.60 0.71
zero-dce 29.40 12.96 24.81 10.24

Table 3: Accuracy of four models on Tiny Imagenet before attack,
after RA-AVA attack and after Zero-DCE correction.

AVAs against vignetting corrections. Since our method is



Original

RA-AVA attack and after Zero-DCE correction.

to use the vignetting effect as the attack method, we need to
consider whether the method of light intensity and vignetting
correction can neutralize our attack. For this reason, we use
the Zero-DCE method [Guo ef al., 2020a] to adjust the light
intensity. The visualization result is shown in Fig. 6. It can
be seen that the Zero-DCE method has performed a certain
brightness correction on the attacked images. The quantita-
tive results of the accuracy change are shown in Table 3. Af-
ter Zero-DCE correction, the accuracy has a certain improve-
ment, but it is still lower than the original. It shows that the
Zero-DCE method could mitigate the attack on some images
but it is still not effective (e.g., only about 10% improvement),
indicating that our attack method is robust against intensity
and vignetting correction methods.

5 Conclusion

We have successfully embedded stealthy adversarial attack
into the image vignetting effect through a novel adversarial
attack method termed adversarial vignetting attack (AVA).
By first mathematically and physically model the image vi-
gnetting effect, we have proposed the radial-isotropic ad-
versarial vignetting attack (RI-AVA) and tuned the physi-
cal parameters such as the illumination factors and the focal
length through the guidance of the target CNN models un-
der attack. Next, by further allowing the effective regions of
vignetting to be radial-anisotropic and shape-free, our pro-
posed radial-anisotropic adversarial vignetting attack (RA-
AVA) can reach much higher transferability across various
CNN models. Moreover, level-set-based optimization is pro-
posed to jointly solve the adversarial vignetting regions and
physical parameters.

The proposed AVA-enabled adversarial examples can fool
the SOTA CNNs with high success rate while remaining im-
perceptible to human. Through extensive experiments on
three popular datasets and via attacking four SOTA CNNs, we
have demonstrated the effectiveness of the proposed method
over strong baselines. We hope that our study can mark one
small step towards a fuller understanding of adversarial ro-
bustness of DNNs. In a long run, it can be important to
explore the interplay between the proposed adversarial vi-
gnetting attack and other downstream perception tasks that
are usually mission critical such as robust tracking [Guo ez al.,
2020c; Cheng et al., 2021], robust autonomous driving [Li et

al., 2021], and robust DeepFake detection [Qi er al., 2020;
Juefei-Xu et al., 2021], etc.
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